摘要
该文提出一种用于复杂的非线性未知系统辨识的混合神经网络模型—自适应模糊神经网络(AFNN)。AFNN网络结构简洁,具有通用逼近的特性,能够克服由于突变点的存在而对系统辨识所带来的误差,提高整个系统的辨识精度。对空空导弹攻击区辨识的仿真结果验证了AFNN网络的有效性。
This paper presents a compound neural network model, i.e., adaptive fuzzy neural network (AFNN), which can be used for identifying the complicated nonlinear system. AFNN has a simple structure and possesses the ability of universal approximation. It is capable of overcoming the error of system identification due to the existence of some changing points and improving the accuracy of identification of the whole system. The effectiveness of the model is tested on the identification result of missile attacking area.
出处
《电子与信息学报》
EI
CSCD
北大核心
2001年第4期332-337,共6页
Journal of Electronics & Information Technology
基金
国家863计划
国家部级基金资助项目
关键词
自适应模糊神经网络
模糊聚类
系统辨识
非线性复杂系统
Adaptive fuzzy neural network, Puzzy clustering, System identification, Missile attacking area