期刊文献+

伪欧氏空间的子流形的二次表示 被引量:3

QUADRIC REPRESENTATION OF A SUBMANIFOLD IN A PSEUDO-EUCLIDEAN SPACE
下载PDF
导出
摘要 设x :Mn →Emν 是伪黎曼流形到伪欧氏空间的等距浸入,x~= xxt(t 表示转置) 称为Mn 的二次表示。研究了二次表示x~和浸入x 的关系。 If x:M n→E m ν is an isometric immersion of a pseudo-Riemamian manifold into a pseudo-Euclidean space then the map x~=xx t (t denotes transpose) is called the quadric representation of M n.We study some general results about the quadric representation.
作者 欧阳崇珍
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 1999年第3期197-201,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金 江西省自然科学基金
关键词 伪欧氏空间 子流形 二次表示 pseudo-Euclidean space,submanifold,quadric representation
  • 相关文献

同被引文献19

  • 1TAKAHASHI T. Minimal Immersions of Riemannian Manifolds [J]. J. Math. Soc. Japan, 1966,18:380-385.
  • 2GARAY O J. An Extension of Takahashi' s Theorem [ J]. Geom. Dedicata, 1990,34:105 - 112.
  • 3ALIAS L J, GURBUZ N. An Extension of Takahashi Theorem for the Linearized Operators of the Higher Order Mean Curvatures [J]. Geom. Dedicata,2006,121:113 - 127.
  • 4CHENG S Y, YAU S T. Hypersurfaces with Constant Scalar Curvature [ J ]. Math. Ann. , 1977,225 : 195 - 204.
  • 5DIMITRIC I. Quadric Representation of a Submanifold [ J ]. Proc. Amer. Math. Soc., 1992,114:201 - 210.
  • 6LU J. Hypersurface with Special Quadric Representation [ J ]. Bull. Austr. Math. Soc. , 1997,56:227 - 234.
  • 7LU J. Submanifolds Whose Quadric Representations Satisfy △x = Bx + C [ J]. Kodai Math. J. , 1997,20 : 135 - 142.
  • 8Takahashi T. Minimal Immersions of Riemannian Manifolds[J]. J Math Soc Japan,1966,18:380-385.
  • 9Garay O J. An Extension of Takahashi' s Theorem[J]. Geom Dedicata, 1990,34 : 105 - 112.
  • 10Alias L J, Gurbuz N. An Extension of Takahashi Theorem for the Linearized Operators of the Higher Order Mean Curvatures [ J ]. Geom Dedicata, 2006,121 : 113 - 127.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部