摘要
1985年,Aleksander领导的小组所实现的逻辑神经网络(LNN)成功地应用于脸谱实时识别。由于LNN无需学习算法,硬件可实现实时识别能力,在英国颇受工业界重视。然而,LNN存在一个缺陷就是在大模式划分成小的子模式后会造成LNN非线性能力下降甚至消失。针对上述问题,提出了一种在LNN中实现非线性可分性的方法。
In 1985,the logic neural network(LNN)implemented by Aleksander heading the research group was applied to real-time face recognition and industrial part test successfully,LNN got great emphasis from the U. K. industry for its simplified learning process, its hardware implementability and real-time recognition ability. But its drawback is that its nonlinear separable ability tends to diminish when large input patterns are divided into small subpatterns. In this paper, the authors propose a method to overcome the drawback of LNN.
出处
《南京航空航天大学学报》
CAS
CSCD
1995年第1期126-129,共4页
Journal of Nanjing University of Aeronautics & Astronautics
基金
863项目的资助
关键词
神经网络
模式识别
非线性可分性
图象识别
neural nets
discriminator
pattern recognition
nonlinear separability
n-tuple