摘要
弹粘塑性问题的边界元分析方法中初应力矩阵的形成占用了整个计算时问的大部分。本文在积分域内采用三角形线性单元的离散形式,导出了该矩阵计算的解析式和半解析式,能更有效地处理奇异积分,提高计算精度,缩短计算时间。同时,编制了相应的计算程序,并给出了用于地下工程稳定分析的实例。
The fotmation of the initial stress matrix takes up most of the whole computing time in theclinic-visco-plastic BEM.The analysical formulas and the semi-analysical formulas of the initial stressmatrix are derived for the triangular cells in this peper so that the singularity can be effectively removed.This method can also short6n the computing time and raise accuracy.At the same time,thecorresponding BEM program is compiled the the analysis of the surrounding rock stability of an undergtound project is performed using the program.
出处
《西安理工大学学报》
CAS
1995年第1期51-55,共5页
Journal of Xi'an University of Technology
关键词
弹粘塑性
奇异性
解析式
半解析式
边界元法
域内积分
elastic-visco-plastic
singularity
analysical formulas
semi-analysical formulas