摘要
实反对称矩阵是欧氏空间理论中一类重要的矩阵,在结构力学中有广泛的应用。矩阵的定性在矩阵理论中占有特殊的重要位置。但一般是对称矩阵而言讨论矩阵的定性问题,不过近年来好多文献已就一般矩阵来讨论,如文献[1、2]。本文就实反对称矩阵A加以讨论,当m=2k(k为自然数,下同)时,所得结果显示A^m一定正定(半正定、负定、半负定)以及一些充要条件。为了证明结论方便,先引入一些引理。
出处
《成都师专学报》
2000年第4期1-3,共3页
Journal of Chengdu Teachers College