期刊文献+

纽结理论与量子混沌

Knot Theory and Quantum Chaos
下载PDF
导出
摘要 讨论了纽结理论对量子混沌的应用 ,并揭示了量子系统中混沌解的拓扑结构 . This paper discusses the application of knot theory to quantum chaos, reveals the topological structure of the chaotic solution of quantum systems.
作者 顾之雨
出处 《云南民族学院学报(自然科学版)》 2001年第2期311-313,318,共4页 Journal of Yunnan University of The Nationalities(Natural Sciences Edition)
关键词 纽结理论 量子混沌 纽结支架 李雅普诺夫指数 量子系统 拓扑结构 混沌解 Knot theory, Quantum chaos, Knot holder, Lyapunov exponent
  • 相关文献

参考文献9

  • 1[1]E. N. Lorenz. Deterministic nonperiodic flow [J]. J. Atmos.Sci.,20(1963):130-141
  • 2[2]Louis H. Kauffman. Knots and Physics[M]. World Scientific Singapore 1991,.501-509
  • 3[3]J. S. Birman. R. F. Williams. Knotted periodic orbits in dynamical systems--I: Lorenz's equations [J]. Topology 22(1):1983,47-82
  • 4[4]J. H. Conway,.On Numbers and Games[M]. Academic Press 1976.3-14
  • 5[5]Paul S. Addison. Fractals and Chaos[M]. Institute of Physics Publishing, Bristol and Philadelphia, 1997.16-29
  • 6[6]D. Dürr, G. Goldstein, N. Zanghi. Quantum chaos, classical randomness, and Bohmian mechanics [J]. J. Stat. Phys. 68(1992):259-270
  • 7[7]U.Schwengelbeek.F.H.M.Faisal.Transition to deterministic chaos in a periodically driven quantum system and breaking of the time-reversal symmetry[J]. Phys. Rev,.1997, E 55(5):6260-6263
  • 8[8]F. H. M. Faisal, U. Schwengelbeck. Unified theory of Lyapunov exponents and a positive example of deterministic quantum chaos[J]. Phys. Lett, A 207(1995):31-36
  • 9[9]Hua Wu,D. W. L. Sprung, Quantum chaos in terms of Bohm trajectories[J]. Phys.Lett,A261(1999):150-157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部