期刊文献+

Convergence Theorms of Ishikawa Iterative for Asymptotically Non—expansive Mapping in a Uniformly Convex Banach space

Convergence Theorms of Ishikawa Iterative for Asymptotically Non-expansive Mapping in a Uniformly Convex Banach space
下载PDF
导出
摘要 文[4]把文[3]的主要结果从 Hilbert空间推广到一致凸Banach空间,证明了一致凸 Banach空间 上从有界闭凸集到自身的渐近非扩张映象的迭代序列收敛定理。本文将有界闭凸集的条件减弱为闭 凸集,从而推广了文[4]的相应结果。 In paper [4], the relative result of Jiirgen schu is extended to a uniformly con- vex Banach space, and the convergence of iterative sequence in an uniformly conves Banach space for asymptotically non-expanstive mapping is proved. In paper [4], T is asymptotically non-expanstive mapping with sequence {Kn} in a bounded closed convex subset C of uniformly convex Banach space. In this paper, we let only C is closed convex subset of uniformlly convex Ba- nach space. But convergence theorms of iterative sequences for asymptotically non-expanstive mapping was also proved.
作者 苏永福
出处 《沧州师范学院学报》 2001年第1期30-34,共5页 Journal of Cangzhou Normal University
关键词 有界闭凸集 一致凸BANACH空间 渐近非扩张映象 迭代序列收敛定理 uniformly convex convergence mapping iterate.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部