摘要
从三维时间相依可压缩边界层动量积分方程和平均流动能积分方程出发,将二维可压缩层、湍流边界层积分方程算法推广到求解有限翼展后掠机翼的边界层流动。利用四步Runge-Kutta时间步进方案数值求解积分方程组,并利用当地时间步长加速迭代收敛。文中分析了数值方法的稳定性与收敛性,并考查了横向耗散项对计算结果的影响。算例表明,能获得令人满意的三维机翼定常可压缩层、湍流边界层的计算结果。
Based on three-dimensional, time-dependent momentum and mean-flow kinetic energy integral equations for compressible boundary Layers in nonorthogonal curvilinear coordinates, the existing algorithm for two-dimensional, compressible, Laminal and turbulent integral equations is extended to solve the boundary-layer problem over finite swept wings. The equations are solved by using the four-step Runge-Kutta Scheme with local time marching to accelerate the convergence. The stability and convergence of the numerical scheme is analyzed, and the effect of the crossflow dissipation integral upon the calculation are examined. Numerical results of steady, compressible, laminal and turbulent boundary layers over the finite swept wing show to be satisfactory.
出处
《航空学报》
EI
CAS
CSCD
北大核心
1991年第6期B223-B230,共8页
Acta Aeronautica et Astronautica Sinica
基金
航天飞机高技术项目
航空航天部科学研究基金
关键词
机翼
可压缩流
紊流
积分方程
Wings, Comysressible boundary layers, laminar flow, turbulant flow, integral equations, numerical calculation.