期刊文献+

用天气变量时间序列估计天气的可预报性 被引量:12

ESTIMATING WEATHER PREDICTABILITY FROM THE TIME SERIES OF WEATHER VARIABLES
下载PDF
导出
摘要 本文从非线性系统的吸引子概念出发,用单个气象时间序列重构维数较高的相空间并嵌入天气吸引子,根据相轨道上初始时刻紧邻的点随时间的演化来估计吸引子的维数和天气的可预报性。用500hPa亚洲环流指数和北京冬季气温的逐日资料计算表明,天气吸引子的维数分别为3.8和5.4;可预报时间尺度约6—14天,考虑相空间e指数膨胀因素后为4—9天。 Based on the concept of attractors of nonlinear system, the phase space with higher dimension is reconstructed by using observed single meteorological time series and then the weather attractor is embedded in it. The dimension of weather attractor and the weather predictability can be estimated from the time evolution of initially close pieces of trajectories. Computation results used daily data sets of the general circulation index at 500 hPa in Asia and Beijing temperature in wintertime show the fractal dimensions of 3.8 and 5.4 for these two attractors, respectively; and for which predictability time scale of 6-14 days, while weather predictability time scale of 4-9 days resulted from the e-folding expansion of trajectories in phase space.
出处 《气象学报》 CSCD 北大核心 1992年第1期72-80,共9页 Acta Meteorologica Sinica
  • 相关文献

参考文献2

  • 1杨培才,大气科学,1990年,14卷,1期,64页
  • 2郑祖光,气象学报,1988年,46卷,1期,41页

同被引文献107

引证文献12

二级引证文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部