摘要
在给定Г_(jk)~i的微分流形上张量A^i的平移变更δA^i是有定义的。因而A^i的协变导数A_(;j)~i的平移变更δA_(;j)~i也是可运算的。但δA_(;j)~i=δ[(A^i/x^i)/Г_(jk)~iA^K],而我们却没有δ(A^i/x^j)与δГ_(jk)~i的定义。通常都回避了括号中两部分各自的平移运算,这是很不自然的。本文给出了δ(A^i/x^j)与δГ_(jk)~i的定义,使得作为整体的A_(;j)~i可作平移运算,分成两部分以后也可进行平移运算,并得出相同的总运算结果。 文章最后,顺便对文献[1]中关于δГ_(jk)~i的论述作了一些评论。
Definition of the parallel displacement variance of a tensor A; on the differenti-able manifold that given the(?) was made. Therefore, the parallel displacement variance (?) of the covariant derivative Ai of this Ai may operate, too. But, and we have no definition of the and the Usually, two part separate operation of the parallel displacement in brackets was avided. This is very unnatural. This paper gives definition of the , and theso the Ai as a whole may do operation of the parallel displacement, aftersegregated two parts too, and lead to same overall result.Finally; at one's convenience made a quantity of reviews to the discusion on in the literature [1].
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
1991年第4期60-64,共5页
Journal of Hefei University of Technology:Natural Science
关键词
张量
微分流形
平衡变更
differentiate manifold
nontensors
paralle
displacement variance
covariant derivative