期刊文献+

基于GA的多层次概念归纳学习方法 被引量:1

A Multi-Level Concept Induction Method Based on GA
下载PDF
导出
摘要 面向属性的归纳学习 (亦称概念提升 )是一种广泛使用的知识发现方法。通过归纳学习 ,使得属性域取值的抽象程度提高 ,从而得到较精练的数据集合 ,大大提高了规则的学习效率。但是实际应用环境中的数据属性维数非常多 ,属性概念层次也非常复杂 ,基于集合论的传统学习方法的效率变得越来越低。基于遗传算法的高搜索性能 ,提出了一个概念空间的特征概念层次优化搜索方法 ,特别是处理高维、具有复杂概念层次的问题时收到了较好的效果。 Attribute - oriented induction (concept generalization) is a kind of KDD method widely used. Through concept induction we can improve the abstract level of attribute, thus we can get more succinct rule. But with the number of attribute increasing and the more and more complicated concept levels, the traditional method based on the set theory becomes lower and lower efficient. Based on the high searching ability and efficiency of GA, we propose a new heuristic algorithm in this paper, which seems to work well while dealing with large scale and complex problem, especially those with many dimensions and complicated multi - level concepts.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2001年第4期76-79,共4页 Systems Engineering and Electronics
基金 天津市科学技术委员会资助课题! (0 0 370 0 111)
关键词 数据处理 多层次概念 归纳学习 遗传算法 Genetics\ \ Algorithm\ \ Data processing
  • 相关文献

参考文献3

二级参考文献1

  • 1Ronen Feldman,Haym Hirsh. Exploiting Background Information in Knowledge Discovery from Text[J] 1997,Journal of Intelligent Information Systems(1):83~97

共引文献35

同被引文献7

  • 1HUA X,CERCONE N,HAN J.An attributed-oriented rough set approach for knowledge discovery in databases[A].Rough sets,Fuzzy sets and knowledge discovery[C].Springer-Verlag,1993.90-99.
  • 2SLEZAK D.Decomposition and synthese of decision tables with respect to generalized decision functions[A].Fuzzy and rough set[C].Springer-Verlag,2000.109-112.
  • 3DUNTSCH I,GEDIGA G.Statistical evaluation of rough set dependency analysis[J].International journal of human-computer studies,1997,46(11):589-595.
  • 4ZHONG N,DONG JZ,OHSUAGA S,et al.An incremental probabilistic rough set approach to rule discovery[A].IEEE World Congress on Computational Intelligence(WCCI'98)[C].IEEE Press,1998.933-938.
  • 5MROZAK A,SKABEK K.Rough rules in prolog[A].Proceedings of the First International Conference on Rough Sets and Current Trends in Computing[C].London,UK:Springer-Verlag,1998.458-466.
  • 6BROWNE C,DNTSCH I,GEDIGA G.IRIS revisited:A comparison of discriminant and enhanced rough set data analysis[EB/OL].http://www.cosc.brocku.ca/~duentsch/archive/iris.pdf,1998.
  • 7陈红梅,王丽珍.面向属性的量化归纳[J].计算机研究与发展,2001,38(2):150-156. 被引量:8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部