摘要
以压电各向异性弹性介质广义平面变形的Stroh一般解为基础 ,采用复变函数方法 (即保角变换技术 ) ,研究了条带域介质内物理场的封闭形式解 ,求得了介质内某一点同时存在广义线位错和广义线力作用时的简单明确解 ,它就是边界元法中的Green函数 .还分析了极化介质表面的电荷分布情况 ,并进而讨论了线电荷q与边界分布电荷间的库仑力问题 .文中结果不仅适用于平面或反平面变形问题 ,而且也适用于两者耦合的二维变形问题 .
By using Strohs formalism and the conformal mapping technique, the simple explicit elastic fields of a generalized line dislocation and a generalized line force in a general anisotropic piezoelectric strip with fixed surfaces, which are two fixed conductor electrodes, are derived. The solutions obtained are usually considered as Greens functions which play important roles in the boundary element methods. The Coulomb forces of the distributed charges along the region boundaries on the line charge q at z 0 are analysed in detail. The results are valid not only for plane and antiplane problems but also for the coupled problems between inplane and outplane deformations.
出处
《固体力学学报》
CAS
CSCD
北大核心
2001年第1期31-36,共6页
Chinese Journal of Solid Mechanics