摘要
本文首先将Riccati传递矩阵法和正、逆回旋运动分解理论应用于有阻尼的分布质量转子的复特征问题计算,求出系统各阶正、逆回旋临界速度(也称临界点)及相应报型然后作者对广义阻尼模态理论作了引伸和发展,结合Bogoliubov-Mitropolakii渐近法,建立起一阶微分方程组,计算不平衡柔性转子分别在正、逆回旋下通过各阶临界点的非线性、非定常瞬态响应,还深入分析了转子相继通过两十分邻近的临界点时发生的耩合现象.
In this paper, Riccati transfer matrix method and the component theory of forward and backward whirls are used to the eigenproblem of damped free whirling vibration of a flexible rotor with arbitrily distributed mass on isotropic or anisotropic supports regarding gyroscopic effects to find out its critical speeds and corresponding vibrational shape functions. The generalized damped mode theory is employed in combination with Bogoliubov-Mitropolskii asymptotic method to deduce twe systems of the first differential equations which are numerically integrated to compute transient responses of the rotor passing through its critical speeds in cases of forward whirl and backward whirl respectively with limited power supply. At the same time, the nonlinear and non-stationary vibration of the rotor through two neighboring critical speeds with coupling is solved.
出处
《固体力学学报》
CAS
CSCD
北大核心
1990年第1期11-22,共12页
Chinese Journal of Solid Mechanics
关键词
转子动力学
瞬态响应
分布质量转子
渐近法
陀螺效应
柔性转子
Transient response
Distributed mass rotor
Asymptotic method
Gyroscopic cffect
Anisotropic support