期刊文献+

压电材料中的微裂纹屏蔽问题分析 被引量:2

CRACK TIP SHIELDING BY MICROCRACKING IN PIEZOELECTRIC MATERIALS
下载PDF
导出
摘要 分析当主裂纹与一个微裂纹在远场Ⅰ型力(KI)和远场电位移(Ke)作用下的相互干涉问题,得出了在微裂纹的位置角和方向角同时独立变化时,微裂纹对主裂纹的屏蔽作用的全局图.特别讨论了正、负电载荷下的微裂纹屏蔽问题,发现负电载荷阻止主裂纹扩展,而正电载荷促使主裂纹扩展.通过电算还发现Ortiz在各向同性材料和各向异性材料中得出的“微裂纹群对主裂纹最大屏蔽效应产生在微裂纹方向与最大主应力垂直的方向”在压电材料中不再成立.进而提出除Hutchinson指出微裂纹屏蔽效应两个来源(即;材料有效刚度的降低和残余应力的释放)外的另一个来源;微裂纹对主裂尖电场的扰动.在对主微裂纹J积分分析时发现JZ积分与人积分具有同等重要的地位. Numerical solutions are obtained for the interaction problem between a main crack and an arbitrary located and oriented lmicrocrack near the main crack 1tip under combined Mode I and electric loading conditions. It is found that the positive electric loading promotes the main crack propagation while the negative electric loading retards the main crack propagation in multi- microcrack shielding problems. By virtue of numerical evaluations, it is found that the conclusion obtained by Ortiz in traditional materials, i.e. microcracking normal to the maximum tensile direction maximize shielding, is not suitable for piezoelectric materials. This founding reveals that, besides the two sources of microcrack shielding discussed by Hutchinsion in traditional materials, there is another shielding source, i.e. the disturbance the near-tip electric field due to microcrack- ing. Moreover, J2-integral shows the path-independent nature when the integral contour encloses the microcrack completely. It has the same significance as the J1-integral during J-illtegral analysis for all the cracks.
出处 《力学学报》 EI CSCD 北大核心 2001年第1期46-59,共14页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金!(19472053) 西安交通大学博士点基金资助项目.&&
关键词 压电材料 多微裂纹屏蔽 广义应力强度因子 机械应变能释放率 J积分分析 piezoelectric materials, multi-microcrack shielding, general stress intensity factors, mechanical strain energy release rate, J-integral analysis
  • 相关文献

参考文献6

  • 1Chen Y H,Int J Eng Sci,1996年,34卷,819页
  • 2Park S B,Int J Fracture,1995年,70卷,203页
  • 3Park S B,J Am Ceram Soc,1995年,78卷,1475页
  • 4Cai H,ASME J Appl Mech,1992年,59卷,497页
  • 5Suo Z,J Mech Phys Solids,1992年,40卷,739页
  • 6Gong S X,Int J Fracture,1991年,52卷,257页

同被引文献24

  • 1白象忠.磁弹性、热磁弹性理论及其应用[J].力学进展,1996,26(3):389-406. 被引量:65
  • 2Horii H, Nemat-Nasser. Elastic fields of interacting inhomogeneities.Int J Solids and Structure, 1985, 21(7) :731 - 745.
  • 3SIH G C. Thermal behavior of an infinite medium with collinear cracks.Heat Transfer, USSR,1965,87(2) :157 - 162.
  • 4Мусхелишвнли Н И著,赵惠元译.数学弹性力学的几个基本问题.北京:科学出版社,1958.196—407.
  • 5Prusov A I. Some problem of thermal elasticity. Min-sike: Press of National University of White Russia,1972.12 40
  • 6Kudrivcev B A, Parton V E, Rubinskij B D. Thermo-magnetic elastic field in a body with a finite crack. Applied Mathematics, 1980, 44(5) :916 - 922 .
  • 7Kit G S, Krivcun M G. Two-dimensional problem of thermal elasticity in a solid with crack. Jifu: Press of Scientific Thinking, 1983.18 - 40 .
  • 8Parton V Z. Fracture behavior of piezoelectric materials. Acta Astronaut,1976, 3:671~683.
  • 9Deeg W F. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids [Ph D Thesis]. USA: Stanford University, 1980.
  • 10Pak Y E. Crack extension force in a piezoelectric material. J. Appl.Mech., 1990, 57: 647~653.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部