期刊文献+

极坐标哈密顿体系约当型与弹性楔的佯谬解 被引量:10

JORDAN SOLUTIONS FOR POLAR COORDINATE HAMILTONIAN SYSTEM AND SOLUTIONS OF PARADOXES IN ELASTIC WEDGE
下载PDF
导出
摘要 讨论了极坐标弹性平面哈密顿体系约当型,并通过约当型的求解,直接给出了相关弹性 楔体佯谬问题的解.从理论上阐明了经典弹性力学中某些佯谬问题的出现是由于其对应的是哈 密顿体系中特殊的约当型解,同时也很自然地为该类问题提供了一个通用、有效的求解方法. The classical two-dimensional solutions for the stress distribution in an elastic wedge subjected to a concentrated couple at the vertex become infinite when the vertex angle 20 = 2α (tg2α = α). Similarly, the classical solutions for the stress distribution in an elastic wedge subjected to tractions proportional to ru-1 (u≥ 1) on the surfaces become also infinite when or and constant u satisfy the definite relations. They are paradoxes in an elastic wedge. Looking from the analogy theory between computational structural mechanics and optimal control, the Hamiltonian system theory can be introduced into the theory of elasticity. So much effective mathematical physics methods as the separation of variables and eigenfunction expajnsion etc. can be applied directly in elasticity instead of the traditional semi-inverse solution. The new solution system realizes a translation from Euclidean space to symplectic space. The plane elasticity in polar coordinate also can be derived to Hamiltonian system by introducing the dual variables, so an elastic wedge can be solved directly in symplectic space. In this paper, the paradoxes in elastic wedge are restudied under Hamiltonian system in polar coordinate. For the elastic wedge subjected to a concentrated couple, paradox occurs as μ =-1 is a double eigenvalue, i.e. 20 = 2α, the solution of the paradox just corresponds to Jordan form eigenfunction vector. On the other hand, for the elastic wedge subjected to tractions proportional to ru-1 (μ≥1) on the surfaces, initial paradox or the secondajry paxadox occures as p is a single or double eigenvalue, of course, the solution of the initial or secondary paradox just corresponds to first or second order Jordajn form. These solutions can be solved directly and rationally by normal mathematical physics methods. This work shows that special paradox in Euclidean space under Lagrange system just is Jordajn form solutions in symplectic space under Hajrniltonian system, and the specific characteristics of paradox are due to the Jordan form for Hamiltonian system. This work not only provides an efficient method to solve paradox, but also demonstrates the further applications of Hamiltonian system.
作者 姚伟岸
出处 《力学学报》 EI CSCD 北大核心 2001年第1期79-86,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金!(1973202) 教委博士点基金资助项目&&
关键词 哈密顿体系 约当型 弹性力学 佯谬 楔体 极坐标 弹性楔 Hamiltonian system, Jordan form, paradox, elastic wedge
  • 相关文献

参考文献9

  • 1王敏中.受一般载荷的楔:佯谬的解决[J].力学学报,1986,18(3):242-252.
  • 2丁皓江,彭南陵,李育.受r^n分布载荷的楔:佯谬的解决[J].力学学报,1997,29(1):62-73. 被引量:4
  • 3钟万勰,姚伟岸.板弯曲求解新体系及其应用[J].力学学报,1999,31(2):173-184. 被引量:52
  • 4Zhong W X,Advances Structural Engineering,1997年,1卷,2期,127页
  • 5钟万勰,弹性力学求解新体系,1995年
  • 6Zhong W X,Appl Math Mech,1994年,15卷,12期,1113页
  • 7Zhong Weian,Comput Struct,1993年,49卷,4期,749页
  • 8Zhong Wanxie,Computer Structure,1989年,37卷,6期,993页
  • 9王繁中,力学学报,1986年,18卷,3期,242页

二级参考文献4

  • 1王敏中,力学学报,1986年,18卷,3期,242页
  • 2钟万勰,弹性力学求解新体系,1995年
  • 3Zhong Wanxie,Computational Mechanics in Structural Engineering,1991年
  • 4胡海昌,弹性力学变分原理及其应用,1981年

共引文献54

同被引文献65

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部