摘要
作者对温度分层剪切流进行了试验研究,并建立了数学模型.本文介绍了试验情况,并对数学模型进行了检验.试验结果表明,稳定的垂向温度梯度将显著地减弱紊动强度,分层的稳定性与密度弗汝德数及上下层流速比有关,而与雷诺数无关.模拟计算结果与试验结果符合较好.由计算过程可以看出,紊动Prandtl数,特别是垂向紊动Prandtl数并非常数,其数值与流动及分层条件有关.
Temperature stratified shear flows are experimentally studied and a mathematical model is established. The experimental results shew that stable stratification, accompanied by vertical density gradient, can weaken obviously the turbulent intensity. Stability of stratification is related to the density Froude number and the velocity ratio between the upper and the lower layers, it is not directly related to the Reynolds number. Computational results by the mathematical model agree well with experimental data. In addition, it can be seen that the turbulent Prandtl number is not a constant, especially the vertical Prandtl number, it is related to the state of flow and stratification.
出处
《河海大学学报(自然科学版)》
CAS
CSCD
1991年第4期59-67,共9页
Journal of Hohai University(Natural Sciences)
基金
高等学校博士学科点专项科研基金的资助
关键词
分层流
紊流
数学模型
试验
stratified flow
turbulence
density Froude number
velocity ratio
turbulent Prandtl number