摘要
本文定义了一种Lagrange插值多项式的变型算子,使它不仅能逼近连续函数,而且可以用它逼近Lebesgue可积函数。得到了这两种逼近的逼近阶分别是ω(f;1╱n)和ω(f,1╱n)_p。
In this paper, a modification ot Lagrangc interpolating Polynomial has been introduced. The new polynomial Can be used to approximate not Only the Continuous functions but also the functions in Lp Spaces. Both approximation ordersω(f;1/a) and ω(f;1/a)p have been got also
出处
《河南大学学报(自然科学版)》
CAS
1991年第2期11-16,共6页
Journal of Henan University:Natural Science
关键词
广义
拉氏插值
逼近阶
多项式
Lagrange interpolation, Generalized Lagrangs interpolation, Approximation orders.