摘要
根据Floquent理论关于线性周期系数系统解的性质及稳定性条件 ,定义了非线性非自治系统周期解的稳定度。从动力系统流的概念出发 ,给出了系统稳态周期解稳定度的数值计算方法。定义了滑动轴承转子系统抗扰动稳定裕度 ,利用周期解稳定度等于零为判据来确定抗扰动稳定裕度值。该方法既适于自治系统又适于非自治系统。
The stability degree of periodic solution is defined by the Floquent theory about the property and stability condition of periodic solution of linear system with periodic coefficients. A numeric method evaluating stability degree of periodic solution based on perturbing response data is introduced by the aid of the concept of dynamic systems or flows. The stability margin resisting impulse of lubricated bearing-rotor system iddefined. The value of stability margin is determined according to the condition, stability degree equals zero. Above method can be applied to both autonomous system and nonautonomous system.
出处
《汽轮机技术》
北大核心
2001年第1期35-37,共3页
Turbine Technology
基金
国家自然科学基金资助项目! (重大 19990 5 10 )
国家重点基础研究专项经费资助! (G19980 2 0 3 16)
博士点基金资助! (D0 990 1)