期刊文献+

基于动态垃圾评价的语音确认方法 被引量:7

Utterance Verification Based on Dynamic Garbage Evaluation Approach
下载PDF
导出
摘要 语音关键词识别和确认方法在语音对话系统中得到了广泛的应用.评价此类系统性能的一个重要指标就是处理非关键词(垃圾)的能力.处理垃圾的传统方法是在离线状态下进行垃圾建模.但该方法并不能很好的描述大量的系统词库以外的词,且训练规模较大.该文提出了动态垃圾评价方法,不对垃圾本身建模,而是在识别过程中对输入语音进行可信度评估,从而对识别结果进行确认,解决了传统垃圾模型灵活性差及在线垃圾建模方法的确认能力不足等问题.同时由于在垃圾评价中增加了反关键词信息,减少了关键词之间的识别错误. This paper presents a dynamic garbage evaluation approach based on speaker verification algorithm. This method does not attempt to explicitly define a garbage model, in stead, it evaluates the confidence of the utterance in speech recognition with strong flexibility. The dynamic garbage evaluation score represents the common information of the keywords in vocabulary. Based on the score, the system can more easily discriminate nonkeywords between keywords. The new approach integrates the dynamic garbage evaluation approach with statistic hypotheses test frame of utterance verification. A two-pass strategy is adopted, consisting of recognition followed by verification. The dynamic garbage evaluation is more flexible and with lower computation than the explicit garbage modeling and reduced recognition error rate between keywords. Recognition and verification on isolated and continuous words are tested. The dynamic garbage evaluation performs well. Based on dynamic garbage evaluation, the keyword detection rate is 96%, when the false alarm rate is 6.2%.
出处 《计算机学报》 EI CSCD 北大核心 2001年第5期480-486,共7页 Chinese Journal of Computers
基金 国家自然科学基金,国家重点基础研究发展计划(973计划),高等院校骨干教师基金
关键词 语音确认 语音识别 语音信号处理 隐马尔可夫模型 动态垃圾评价 Dynamics Mathematical models Signal processing Statistical methods Testing
  • 相关文献

参考文献6

  • 1张怡颖,朱小燕,张钹.一种新的说话人确认方法[J].软件学报,1999,10(4):372-376. 被引量:3
  • 2Zhang Yiying,Proc Int Conference on Spoken Language Processing,1998年,42页
  • 3Mazin G,IEEE Trans Speech and Audio Processing,1997年,5卷,3期,266页
  • 4Juang Binghwang,IEEE Trans Speech Autio Processing,1997年,5卷,3期,257页
  • 5Rose R C,Proc Int Conference Acoustics Speech and Signal Processing,1995年,281页
  • 6Chou W,Proc Int Conference Acoustics Speech and Signal Processing,1992年,1期,473页

共引文献2

同被引文献39

  • 1Lawrence Rabiner Biing-Hawang Juang.Fundamentals of Speech Recognition第一版(影印版)[M].清华大学出版社,1999-9..
  • 2W Chou, B-H Juang,C-H Lee. Segmental GPD training of HMM based speech recognizer [A]. in Proc Int Conf On Acoustics, Speech, and Signal Processing[C].1992.473 - 476.
  • 3R Sukkar. Rejection for connected digit recognition hased on GPD semental discrimination [A]. in Proc hat Conf Acoust, Speech and Signal Processing[C]. 1994.393 - 396.
  • 4Mazin G Rahim, Chin-Hui Lee and Biing-Hwang Juang. Dicriminative utterance verification for connected digits recognition[J].IEEE trans speech and audio processing[J]. 1997,5(3) :266 - 277.
  • 5J Wilpon, L Rabiner, C-H Lee, E Goldman. Automatic recognition of keywords in unconstrained speech using hidden Markov models [J].IEEE Trans. Accostics, Speech, Signal Processing[J]. 38 ( 11 ) : 1870 -1990.
  • 6R C Rose, B H Juang, C H Lee. A training procedure for verifying string hypothesis in continuous speech recognition[A]. ICASSP-95 Detroit[C]. 1995.281 - 284.
  • 7C de la Torre, L Hernandez-Gomez, F J Caminero-Gil, C Martin del alamo. On-line Garbage Modeling for Word and Utterance Verification in Natural Numbers Recognition [A]. ICASSP-96, Atlanta [ C ]. 1996.845 - 848.
  • 8H Bonrlard, B D' hoore, J- M Boite. Optimizing recognition and rejection performance in wonrdspetting systems[A]. ICASSP-1994[C]. 1994. 373- 376.
  • 9R Paredes, A Sanchis, E Vidal, A Juan. Utterance verification using an optimized k-nearest neighbour classifier [A]. EUROSPEECH-2003,Geneva[C]. 2003.
  • 10A Sanchis, A Juan, E Vidal. Improving utterance verification using a smoothed naive bayes model[ A ]. ICASSP-2003[ C] .2003.

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部