摘要
对一类不确定非线性系统 ,提出一种基于 T- S模型的自适应 FNN控制器 .首先用权值固定的 FNN作为非线性系统的近似模型 ,然后再应用自适应 FNN逼近建模误差 ,并引入滑模项增加控制器的鲁棒性 .通过稳定性理论设计自适应律 ,保证了系统的全局稳定 。
An adaptive FNN control scheme for a class of unknown nonlinear systems is presented, which is based on multi-dimensional fuzzy inference model proposed by Takagi and Sugeno. The control architecture first employs two fixed structural FNNs to approximate plant uncertainties, then uses additional parallel adaptive FFNs to compensate for the modeling errors. A sliding mode term is introduced to improve robustness. Based on the Lyapunov theory, the adaptation laws to tune on-line both the membership functions and weighting factors are derived. Therefore, the closed-loop system is stable with the tracking error converging to zero.
出处
《自动化学报》
EI
CSCD
北大核心
2001年第3期371-376,共6页
Acta Automatica Sinica
基金
国家自然科学基金资助项目
关键词
非线性系统
模糊神经网络
自适应控制
稳定性
T-S模型
自适应FNN控制器
Adaptive control systems
Control equipment
Fuzzy control
Lyapunov methods
Membership functions
System stability
Uncertain systems