期刊文献+

带聚类的Hilbert R-树建树算法 被引量:1

CLUSTERING METHOD USED IN HILBERT R-TREE BUILDING
原文传递
导出
摘要 本文提出了一种新的建立在一维聚类上的建树方法。该算法改变了原来Hillbert R-树建树方法中的机械填充方式,通过在数据的Hilbert值集合中进行的聚类而对叶子节点中的数据进行优化组合从而得到了更小的叶子节点,提高了检索的效率。实验表明,特别对于分布不均匀的数据,该算法在有限增加计算复杂度的前提下可以大大提高检索效率。 In this article, we propose a new method of building the Hilbert R-tree based on clustering. The new algorithm outperforms the former one of mechanical filling and realizes optimized combination of data in leaf nodes by clustering in their Hilbert value sets. In this way, we can get smaller leaf nodes and improve the efficiency of retrieval. Experiments on both simulated and real data show that under the condition of computing complexity increased to a limited extent, this algorithm can greatly reduce the search cost, especially for data sets with skewed distribution.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2001年第1期9-13,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金
关键词 R-树 HilbertR-树 聚类 数据结构 建树算法 R-Tree, Hilbert R-Tree, Leaf Node, Clustering
  • 相关文献

参考文献7

  • 1Kamel I,,Faloutsos C.Hibert R-Tree: An Improved R-tree Using Fractals[].Proc th International Conference on Very Large DataBases.1994
  • 2Kamel I,Faloutsos C.On Packing R-Trees[].Proc nd International Conference on Information and Knowledge Management.1993
  • 3Antonin Guttman.R-trees: a dynamic index structure for spatial searching[].Proceedings of the ACM SIGMOD International Conference on the Management of Data.1984
  • 4Beckmann N,Kriegel H-P,Schneider R,Seeger B.The R*-tree :An Efficient and Robust Access Method for Points and Rectangles[].Proc ACM SIGMOD International Conference on Management of Data (SIGMOD‘ ).1990
  • 5T.Sellis,N.Roussopoulos,and C.Faloutsos.the R+ Tree:a dynamic index for multidimensional objects[].Proc th IntConfon Very Large Databases.1987
  • 6Stefan Berchtold,Daniel A  Keim,Hans-Peter Kriegel.The X-tree: An Index Structure for High-Dimensional Data[].Proceedings ot the nd VLDB Conference.1996
  • 7Weber R,Schek H J,Blott S.A quantitative analysis and per-formance study for similarity-search methods in high-dimension-al spaces[].Proceedings of VLDB.1998

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部