期刊文献+

基于网格系的分频段加权正交小波网络辨识非线性系统 被引量:1

WEIGHTED BAND-WISE ORTHOGONAL WAVELET NETWORK BASED ON GRID STRUCTURE FOR NONLINEAR SYSTEMS IDENTIFICATION
下载PDF
导出
摘要 在非线性系统辨识中 ,输入数据往往是非均匀分布的 .对于此类问题 ,正交小波网络处理起来较复杂 .本文采用分组中值法对非均匀分布样本进行均匀化处理 ,使正交小波网络的设计和应用能够在网格系上进行 ;然后 ,采用分频段加权技术以便和系统设计相配合 .最后用于辨识非线性动态系统 。 In identification of nonlinear system, the system inputs usually are non-uniformly distributed. The approach using orthogonal wavelet network (OWN)to tackle this problem is complex. This paper transfers non-uniformly distributed data into uniformly-distributed data using grouping median method such that the design and application of orthogonal wavelet network can be completed on the grid structure. In addition, a weighted band-wise OWN is proposed to be combined with system design. The advantages of this method are noise-free, computationally efficient, easy to understand. Finally, a nonlinear dynamic system is identified, the results of simulation show that it is feasible and effective.
出处 《信息与控制》 CSCD 北大核心 2001年第2期104-107,共4页 Information and Control
基金 国家自然科学青年基金项目! (6970 40 0 6)
关键词 正交小波网络 多分辨分析 非线性系统 系统辨识 网络系统 orthogonal wavelet network, weighted band-wise, non-uniformly distributed data, multiresolution analysis
  • 相关文献

参考文献3

  • 1Zhang Q,IEEE Trans Neural Networks,1997年,8卷,2期,227页
  • 2Zhang J,IEEE Trans Signal Processing,1995年,43卷,1期,1485页
  • 3Zhang Q A,IEEE Trans Neural Networks,1992年,8卷,3期,889页

同被引文献9

  • 1焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 2Zhang Q H,Albert B.Wavelet network[J].IEEE Trans.Neural Networks,1992,3(8):889~898.
  • 3Zhang Q H.Using wavelet network in nonparametric estimation[J].IEEE Trans.Neural Networks,1997,8(3):227~236.
  • 4Kugarajah T,Zhang Q H.Multidimentional wavelet frames[J]. IEEE Trans.Neural Networks,1995,6(6):1552~1556.
  • 5Chen S,Cowan C F N,Grant P M.Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Trans.Neural Networks,1991,2:302~309.
  • 6Yiu K F C,Wang S,Teo K L,Tsoi A C.Nolinear system modeling via knot-optimizing B-spline networks[J].IEEE Trans.Neural Networks,2001,12(5),1013~1022.
  • 7Sjoberg J,Zhang Q,Ljung L,et al.Nonlinear black_box modeling in system identification:a unified overview[J].Automatica,1995,31(12):1691~1724.
  • 8Hornik K M,Stinchchombe M,While H.Multilayer feedforward networks are universal approximators[J].Neural Network,1989,2:359~366.
  • 9Scarselli F,Tsoi A C.Universal appromixation using feedforword neural networks:A survey of same existing methods,and some new results[J].Neural Networks,1998,11(1):15~37.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部