期刊文献+

特殊行列式D_n(m,k)的计算 被引量:4

Computation of a Specific Determinant D_n(m,k)
下载PDF
导出
摘要 给出了计算以数列 {Pn}的项为元素的特殊行列式 Dn( m,k)的一般公式 .以及数列 {Pn}一般项由递推公式 Pn+ 1( x) =s( x) Pn( x) + t( x) Pn-1( x)确定时 ,求数列一般项的公式 ,并讨论了当 Pn=ncλn + P0 λn( c,λ,P0 为常数 )且 m <n - 1时 ,Dn( m,k) =0的重要性质 ,最后指出 Fibonacci,chebyshev行列式的计算 。 The general formula is given for calculating the specific determinant, whose elements are the terms of a number sequence {P n}. The formula is also given for calculating the terms when the terms are determined by the recursion formula of P n+1 (x)=S(x)+P n-1 (x)·t(x). The important characteristics of D n(m,k)=0 were discussed when P n=ncλ n+P oλ n(c,λ,P o are all constants) and m<n-1.It is pointed that Fibonacci's and chebyshev's determinants are two specific examples of the proposition.
出处 《西安石油学院学报(自然科学版)》 2001年第3期69-72,共4页 Journal of Xi'an Petroleum Institute(Natural Science Edition)
关键词 Fibonacci行列式 Chebyshev行列式 VANDERMONDE行列式 递推公式 差分 Fibonacci determinant, Chebyshev determinant, Vandermonde determinant, recursion formula, difference
  • 相关文献

参考文献5

共引文献17

同被引文献22

  • 1刘端森,李超,杨存典.Fibonacci数奇数次方的积和式[J].纺织高校基础科学学报,2004,17(3):187-189. 被引量:23
  • 2史永堂.关于Chebyshev,Lucas及Fibonacci多项式[J].西北大学学报(自然科学版),2006,36(2):193-196. 被引量:7
  • 3Wildberger N J.Divine Proportions: Rational Trigonometry to Universal Geometry,Wiht Egg Books,Sydney,2005.
  • 4Romanoff N P, Hilbert space and NumberTheory,1951 (15):131-152.
  • 5S.Kanemitsu.H.Tsukada,Vitas of special functions, Word Scientific, Sigapore-London-New York,2007:147.
  • 6Wenpeng Zhang, Some identifies involving the Fibonacci numbers, Fibonacci Quart. 1997,35:225-229.
  • 7http://en.wikipedia.org/wikj/spread-polynomials#Reeursion -formula 2009.12.18.
  • 8[1]Yuan Yi,Wenpeng Zhang.Some identities involving the Fibonacci polynomials[J].Fibonacci Quart,2002(40):314-318.
  • 9[2]Wenpeng Zhang.Some identities involving the Fibonacci numbers[J].Fibonacci Quart,1997(35):225-229.
  • 10[3]Fengzhen Zhao,Tianming Wang.Generalizations of some identities involving the Fibonacci polynomials[J].Fibonacci Quart,2001 (39):165-167.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部