期刊文献+

极化时间与电位对铅锡合金钝化层性能的影响 被引量:1

Effects of polarization time and potential on performance of lead/tin passivation layer
下载PDF
导出
摘要 锡能改变钝化层的电子导电性 ,通过在不同电位和各种极化时间下电化学阻抗的测量来研究电子导电性与钝化层形成条件的关系。在 70 0mV的极化区域内 ,钝化层的电阻随极化时间的增加而增加 ,但加入合金锡以后 ,极化电阻减小 ,这主要是由于锡的加入促进了半导体的PbO与锡氧化物的形成。当电位进入到 15 0 0mV时 ,形成了PbOx,由于PbOx 的导电性好于PbO ,所以钝化层的阻抗较小 ,但随着极化时间的增加 ,阻抗还是逐渐增加 ,这主要是PbOx 在 70 0mV处又还原成PbO。 Tin could change electronic conductivity of the passivation layer. The relationship between the electronic conductivity and the formation condition of the passivation layer was studied by measuring the electrochemical impedance at different polarization potential and polarization time. When the lead electrode was pola- rized in the region of 700 mV, the polarization resistance increased with time but decreased when tin was alloyed. This can be explained by the increasing formation of semi-conducting PbO and conducting tin oxide. With a potential incursion in the region of 1500 mV, PbO x was formed. Due to the better conductivity of PbO x than PbO, the passivation layer had lower impedance. However, the resistance increased with polarization time. This can be interpreted by the reduction of PbO x to PbO at 700 mV.
出处 《电源技术》 CAS CSCD 北大核心 2001年第2期88-90,共3页 Chinese Journal of Power Sources
关键词 铅锡合金 钝化层 铅酸蓄电池 极化时间 电位 正极 负极 polarization potential lead/tin alloy passivation layer
  • 相关文献

参考文献2

  • 1张翠芬.电化学测量[M].哈尔滨:哈尔滨工业大学出版社,1990.108.
  • 2张翠芬,电化学测量,1990年,108页

同被引文献11

  • 1戴长松,王殿龙,伊廷锋,胡信国,姜兆华.泡沫铅对VRLA电池负极活性物质结构及性能影响[J].无机化学学报,2005,21(12):1875-1879. 被引量:9
  • 2GAO P, LIU Y, BU X, et al. Solvothermal synthesis of α-PbO from lead dioxide and its electrochemical performance as a positive electrode material [ J ]. J Power Sources, 2013, 242: 299-304.
  • 3MAY G J, MALESCHITZ N, DIERMAIER H, et al. The optimisation of grid designs for valve-regulated lead/ acid batteries for hybrid electric vehicle applications [J]. J Power Sources, 2010, 195(14) : 4520-4524.
  • 4LI H, LIU H, WANG Q, et al. Effects of covalently bonded siloxane on the electrochemical and physical behaviour of GEL-VRLA battery [ J]. Electrochim Acta, 2010, 56 (2) : 663-666.
  • 5TANG L, LI A, CHEN H, et al. The electrochemical pcrformances of a novel lead--sodium binary grid alloy for lead-acid batteries [ J]. Electrochim Aeta, 2011, 56 (12) : 4566-4570.
  • 6MONAHOV B, PAVLOV D, KIRCHEV A, et al. Influence of pH of the H2SO4 solution on the phase composition of the PbO2active mass and of the PbO2 anodic layer formed during cycling of lead electrodes [J]. J Power Sources, 2013, 113(2) : 281-292.
  • 7PAVLOV D, RUEVSKI S. Semi-suspension technology for preparation of tetrabasic lead sulfate pastes for lead- acid batteries [J]. J Power Sources, 2001, 95(1/2) : 191-202.
  • 8GUO W X, SHU D, CHEN H Y, et al. Study on the structure and property of lead tellurium alloy as the positive grid of lead-acid batteries [ J]. Journal of Alloys and Compounds, 2009, 475(1/2) : 102-109.
  • 9LI A, CHENI Y, CHEN H, et al. Electrochemical behavior and application of lead--lanthanum alloys for positive grids of lead- acid batteries [ J ]. J Power Sources, 2009, 189(2): 1204-1211.
  • 10BUI N, MATYESCO P, SIMON P, et al. Fundamental research on the role of alloying tin as a means to eliminate the passivation phenomena in lead/acid batteries [J].J Power Sources, 1998, 73(1): 30-35.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部