摘要
证明了其根位于复平面中某开域的所有n阶多项式的全体构成多项式参数空间中的一个单连通集,并基于这一结果进一步提出了关于一般多面体多项式族D-稳定性的棱边定理和关于一般多项式紧集D-稳定性的边界定理.所得结果包含了多项式参数无关和相关两种情形.不同于已有结果,作者提出的棱边定理和边界定理不要求多项式集的凸性与单连通性.另外,关于相关参数的多项式集的边界定理还突破了现有结果中关于参数相关关系为仿射映射的限制.
It is proved that all monic polynomials of order n with roots lying in some open region on the complex plane forms a simply connected set in the polynomial parameter space. Based on this re- sult, Edge Theorems for D-stability of general polyhedrons of polynomials and Boundary Theorems for D-stability of compact sets of polynomials are obtained. Both cases of families of polynomials with dependent and independent coefficients are considered. Different from the previous ones, our Edge Theorems and Boundary Theorems do not require the convexity orthe connectivity of the set of polynomials. Moreover, our Boundary Theorem for families of polynodrials with dependent coefficients does not require the coefficient dependency relation to be affine.
出处
《黑龙江大学自然科学学报》
CAS
2001年第1期24-30,共7页
Journal of Natural Science of Heilongjiang University
基金
国家杰出青年基金资助项目
教育部跨世纪人才基金资助项目
关键词
多项式族
相关参数
边界定理
棱边定理
D-稳定性区域
单连通性
凸性
仿射映射
Family of polynomials, dependent coefficients, D-stability, Boundary Theorems, Edge Theorems, closed and relative open mapping