摘要
设ζ_1ζ_n(n≥1)是i.i.d.实值随机变量,a_1,…,a_m是一组实数。定义X_a=sum from i=1 to (?) (a_iζ_i+a,(?)=1/n sum from i=1 to n (X_a)。)本文证明:若Eexp(tζ)<∞(A|t|<η),则服从大偏差原理。
Let n>l,be i. i. d. real valued random variables with Eexp(t)< for t in some neighborhood of 0. Let a1,... , am be real numbers. Define We prove that
satisfies the large deviation principle.
出处
《湖北大学学报(自然科学版)》
CAS
1991年第3期235-238,共4页
Journal of Hubei University:Natural Science
关键词
随机过程
Cramer定理
大偏差
Cramer's theorem,m-dependent random process,Large deviation.