摘要
该文是作者关于Grünwald插值算子工作的续,分别考虑了基于第一类Tchebycheff零点和基于第二类Tchebycheff多项式零点的Grunwald插值算子对连续函数的点态逼近问题,给出了精确的逼近阶估计,并附带地改进了孙燮华教授的一个结果。
The pointwise estimater of approximation of Grunwald interpo-latory operators based on the zeros of the Tchebycheff polynomial of the firstkind and the zeros of the Tchebycheff polynomial of the second kind are con-sidered respectively. It presents the correct degree of approximation and im-proves a result by Sun.
关键词
Gruenwald
插值算子
点态逼近
approximation theory of functions
interpolation
operator
approximation
estimations
continuous modular
polynomial
point wise estimates