摘要
对微分方程μ(dn)/(dt)=F(x,t,μ)及边值条件R(x(0,μ),x(1,μ))=0,其中x,F,R皆为M维向量,本文运用??边界层函数法,借助于临界情况的初值问题,进一步对具有单边界层的临界情况边值问题进行专门讨论.给出了解存在唯一的充分条件.
The differential equations μ(dx)/(dt)=F(x,t, μ,) with boundary condition R(x(0, μ), x(1, μ))=0 are discussed where x, F, Rare m-dimensipn vectors.The method of Vasilevas' boundary layer function and the results on critial case of initial value problems are used to study the critical case of boundary value problem with a single boundary layer.Sufficient conditions for the existence and uniqueness of solutions are given.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
1991年第3期13-18,共6页
Journal of East China Normal University(Natural Science)
关键词
临界情况
边值问题
一致有效性
critical singular perturbation small parameter uniformly effcetive