期刊文献+

函数连接型神经网络在氟化物非晶态形成条件中的应用(英文)

APPLICATION OF FUNCTIONAL-LINK NET TO PATTERN RECOGNITION OF AMORPHOUS FORMATION CONDITIONS OF FLUORIDES
下载PDF
导出
摘要 函数增强型神经网络 (FunctionalLinkNet,简称FLN)是一种无隐含层的新型网络 ,应用其三阶联合激励增强特性来对三元体系氟化物非晶态形成条件进行识别研究 ,识别准确率近 1 0 0 %。在对预测集的每一个输入信号添加1 0 %的噪音干扰后 ,发现识别率依然不变。直到噪音添加到1 5% ,仍然能准确判别。可见网络的容错能力是十分令人满意的。 Functional-Link Net(FLN)is a single-layer neural network,without hidden layer.We use the threeorder joint-activition of the FLN to study pattern recognition of the amorphous formation conditions of trinal fluorides.The predicted classification discrimination is 100%.After adding 10% noise to every input signal of the testing set,the discrimination retains constant.The classification discrimination is still accurate until adding 15% noise to every input signal of the testing set.The fault-tolerant ability of the FLN is very satisfactory.
出处 《常德师范学院学报(自然科学版)》 2000年第2期7-10,共4页 Journal of Changde Teachers University
基金 Supportedbystatenaturalsciencefundation(No .2 9775 0 0 1)
关键词 函数增强型神经网络 模式识别 三元体系氟化物 非晶态形成 识别率 容错能力 Functional-Link Net(FLN) three-order joint-activition amorphous formation conditions of trinal fluorides fault-tolerant
  • 相关文献

参考文献12

  • 1[1]Pao Y. H. Adaptive pattern recognition and neural net-works, Addission - Wesly Publishing Company Inc., 1988.197
  • 2[2]Djukanovic M. Babic B., Sobajic D.J., Pao Y. H. Unsuperivsed/superivsed learning concept for 24 - hour loadForecasting. IEE Proceedings - C, 1993, 140(4): 311 ~318
  • 3[3]Djukanovic M. B. , Popovic D. P., Sobajic D. J., Pao Y.H. Prediction of power system frequency response aftergenerator outages using neural nets. IEE Proceeings- c,1993,140(5) :389 ~ 398
  • 4[4]Pao Y. H., Sobajic D.J. Combined use of unsupervised andsupervised learning for dynamic security assessment. IEEETrans, 1992, PWRS- 7(2) :878 ~ 884
  • 5[5]Yang Y. S., Zhang H. H. Application of functional- linknet to structure- property relationship. In: The 5th Conference on Computer Chemistry Proceeding( Abstracts, in Chinese). Shanghai: Chinese Chemical Society, 1995: 52
  • 6[6]Pan Z. X., Wang Y. M., Xiong J. H., Liu W., Guo J.K. ,Zhang M. S., Application of functionallink net to theprediction of the age of ancient porcelain glaze. Microcomputer Applications, 1997,16 (3): 115 ~ 117
  • 7[7]Luo M.Q., Cheng Z. N. Cheng N. Y. Application of patternrecognition- chemical bond methods to predict the amorphous formatation of fluorides, In: The 3th National Con-freence of Computer Chemistry Proceedings ( in Chinese).The Chinese Chemical Society, 1991:102
  • 8[8]Bishop C. M. Training with noise is equivalent to Tikhonvoregularization. Neural Computa., 1995,7: 108 ~ 116
  • 9[9]Murray A. F., Edwords P. J. Enhanced MLP performanceand fault - tolerance resulting from synaptic weight noiseduring training. IEEF Trans. Neural Networks, 1994,5: 792~802
  • 10[10]Burton R. M., Mpisos Jr. and G. J. Event - dependentcontrol of noise enhances learning in neural networks,Neural Networks, 1992,5: 627 ~ 637

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部