期刊文献+

具振动系数的中立型时滞微分方程解的渐近性

ASYMPTOTIC BEHAVIOR OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH OSCILLATING COEFFICIENTS
下载PDF
导出
摘要 考虑具有振动系数的中立型时滞微分方程 [x(t)+p(t)x(t-τ(t) ) ]′ +Q(t)x(t-σ) =0 ,t≥ 0 ,其中p、Q∈C([0 ,∞ ) ,R) ,τ∈ (0 ,∞ ) ,σ∈ [0 ,+∞ ) ,Q(t)最终不恒为零。记Q+ (t) =max{ 0 ,Q(t) } ,Q-(t) =-min{ 0 ,Q(t) }。获得了该方程的每一个解或者振动或者趋于零的一个新的充分条件。 In this paper,the author considers neutral delay differential equation with oscillating coefficients [x(t)+p(t)· x(t-τ)]′+Q(t)x(t-σ)=0,t≥0, where Q、p∈c([0,∞),R),τ∈(0,∞),σ∈[0,∞),Q(t)0, eventually.Denote Q +(t)= max {0,Q(t)},Q -(t)=- min {0,Q(t)}, the author obtains a new sufficient condition for the every solution of Eq(1)to oscillate or tend to zero.
出处 《常德师范学院学报(自然科学版)》 2000年第2期30-32,共3页 Journal of Changde Teachers University
关键词 振动系数 渐近性 非振动解 中立型时滞微分方程 振动性 充分条件 oscillating coefficient neutral type asymptotic behavior delay
  • 相关文献

参考文献8

  • 1[1]J@ S@ Yu. Oscillation of neutral differential equations with oscillating coefficients. Czschoslovak. Math. J. 1994,44 (3): 119 ~ 120
  • 2[2]J@ S@ Yu, M@ P@ Chen, I C Wang. Nonoscillatory solutions of neutral delay differential equations, Bull. Austral Math. Soc, 1993,48:475 ~ 483
  • 3[3]Q@Chuanri,G@ Ladas. Oscillation of neutral differential equationswith variable coefficients. Appl. Anal, 1989,32: 215 ~ 228
  • 4[4]I@ Gyori, G@ Ladas. Oscillation theory of delay differential equations with ap0plications. Oxford: Oxford University Press, 1991.139
  • 5[5]郑祖麻.泛函微分方程理论.安徽:安徽教育出版社,1994.80
  • 6[6]Y@ Kitamura, T@ Kusano. Oscillation and asymptotic behavior offirst- order functional differential equations of neutral type.Funkcial Ekva, 1990,33:325 ~ 343
  • 7[7]Wang Qiru . Asymptotic behavior and oscillation of first orderneutral functional differential equations. J. of Mathematical research and exposition, 1995,15(4) :40 ~ 42
  • 8[8]J@S@Yu,Z@C@Wang,C@X@Qian. Oscillation and nonoscillation ofneutral delay differential equations. Bull. Austral Math Soc,1992,45:195 ~ 200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部