期刊文献+

两偏振分量不同分布的一维矢量光折变空间光孤子 被引量:1

VECTOR PHOTOREFRACTIVE SPATIAL SOLITONS IN WHICH THE TWO POLARIZATIONS HAVING DIFFERENT PROFILES
下载PDF
导出
摘要 分别自耦合和互耦合两种情况研究了光折变晶体中的一维矢量光折变空间孤子 .分别亮孤子和暗孤子情形导出了两偏振分量所遵从的非线性波方程 ,讨论了其传播常量 . Vector solitons coupled only through the dependence of the space charge field on the intensity and coupled through the electro optic tensor and the space charge field in which the two polarization have different profiles are investigated.The nonlinear wave equations for vector spatial soliton in photorefractive media are derived,with the propagation constants discussed.
出处 《光子学报》 EI CAS CSCD 北大核心 2001年第3期276-279,共4页 Acta Photonica Sinica
基金 国家自然科学基金!( 698770 1 5) 陕西省自然科学基金
关键词 光折变效应 矢量空间孤子 传播常量 偏振量 自耦合 互耦合 光折变晶体 Photorefractive effects Spatial soliton Vector spatial soliton Propagation constant
  • 相关文献

参考文献6

  • 1[1]Segev M,Crosingnani B,Yariv A,Fischer B.Spatial solitons in photorefractive media.Phys Rev Lett,1992,68(7):923~925
  • 2[2]Christodoulides D N,Carvalho M I.Bright dark,and gray spatial soliton states in photorefractive media.J Opt Soc Am,1995,B12(9):1682~1633
  • 3[3]Segev M,Shih M,Valley G C.Photorefractive screening solitons of high and low intensity.J Opt Soc Am,1996,B13(4):706~718
  • 4[4]Singh S R,Christodoulides D N.Effects of optical activity on photorefractive spatial in a biased Bi12TiO20 crystal.Opt Soc Am,1996,B13(45):719~724
  • 5[5]Zozulya A A,Anderson D Z.Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field.J Opt Soc Am,1996,52(2):1520~1531
  • 6[6]Singh S R,Carvalho M I,Christodoulides D N.Vector interactions of steady-state planar solitons in biased photorefractive media.Phys Rev(A),1995,51(21):2177~2179

同被引文献19

  • 1董亮伟,叶芳伟,王建东,李永平.带有相反拓扑指数的光学涡流间相互作用研究[J].物理学报,2004,53(10):3353-3357. 被引量:10
  • 2董亮伟,叶芳伟,王建东,李永平.一类两维光学格子中稳定的复合孤子[J].物理学报,2005,54(9):4458-4462. 被引量:1
  • 3REITZE A,WEINER H,LEAIRD D.High-power femtosecond optical pulse compression by using spatial solitons[J].Opt Lett,1991,16(18):1409-1411.
  • 4SCHEUER J,ORENSTEIN M.Interactions,switching of spatial soliton pairs in the vicinity of a nonlinear interface[J].Opt Lett,1999,24(23):1735-1737.
  • 5PRAMONO Y,GESHIRO M,KITAMURA T,et al.Optical logic OR-AND-NOT and NOR gates in waveguides consisting of nonlinear materia[J].Trans Elect,2000,E83-C(11):1755-1761.
  • 6ACEVES A,MOLONEY J,NEWELL A.Theory of lightbeam propagation at nonlinear interfaces Ⅰ:equivalent-particle theory for a single interface[J].Phys Rev A,1989,39(4):1809-1827.
  • 7GARZIA F,SIBILIA C,BERTOLOTTI M.Swing effect of spatial soliton[J].Opt Commun,1997,139:193-198.
  • 8SURYANTO A,GROESEN E.On the swing effect of spatial inhomogeneous solitons[J].Journal of Nonlinear Optical Physics and Materials,2001,10(2):143-152.
  • 9KARTASHOV Y,VYSLOUKH V,TORNER L.Tunable soliton self-bending in optical lattices with nonlocal nonlinearity[J].Phys Rev Lett,2004,93(15):153903.
  • 10KARTASHOV Y,CRASOVAN L C,ZELENINA A,et al.Soliton eigenvalue control in optical lattices[J].Phys Rev Lett,2004,93(14):143902.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部