期刊文献+

一类二阶拟线性微分方程的非振动定理

Nonoscillation Theorems for a Class of Quasilinear Differential Equtions of Second Order
下载PDF
导出
摘要 考虑二阶拟线性微分方程 :( |y′|α -1y′)′+q(t) |y|α -1y=0 ,获得了在 q(t)振动的条件下该方程非振动的一些充分 (必要 )条件 。 Consider the second order quasilinear differential equation:(|y′| α-1 y′)′+q(t)|y| α-1 y=0.Sufficient conditions for nonoscillation of this equation are obtained under q(t) being oscillate.Our results improve and generalize some known results.
作者 蒋建初
出处 《娄底师专学报》 2001年第2期70-71,共2页 Journal of Loudi Teachers College
关键词 二阶 拟线性微分方程 非振动解 斯图姆定理 second order Quasilinear differential equations nonoscillation solutions sturm theorem
  • 相关文献

参考文献6

  • 1[1]A. Elbert, Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations, in "ordinary and partial differential equations" pp. 187 - 212. Lecture Notes in Mathematics, vol. 964, Springer - Verlag, New York/Berlin,1982.
  • 2[2]A. Elbert, A half - linear second order differential equation, in"Qualitative Theory of Differential Equations" pp.153- 180. colloq. Math. Soc. Janos Bolyai. Vol. 30. NorthHolland, Amsterdam, 1979.
  • 3[3]M. Del Pino, M. Elgueta and Manasevich, Generalixing Hartman' s oscillation result for ( |x'| p-2 x')' + c(t)|x|p-2 x = 0, p > 1 [J ]. Houston. J. Math. 17(1991), 63 - 70.
  • 4[4]Kusano Takasi. Nonoscillation theorems for a class of quasilinear differential equations of second order[J]. Math.Anal. Appl. 189( 1995), 115 - 127.
  • 5[5]E. Hille, Non - oscillation theorems[ J ]. Trans. Amer.Math. Soc,64(1948) ,234 - 252.
  • 6[6]Swanson. C. A. comparison and oscillation theory of linear differential equations[ M]. Aeademic press, 1968.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部