期刊文献+

基于自适应权值的多分类器融合方法 被引量:3

Adaptive Weighting Based Fusion Method of Multi-Classifiers
下载PDF
导出
摘要 提出了一种类似于聚类分析的融合方法 ,它通过分析样本在特征空间的分布 ,来估计分类器分类结果的可靠性 ,并根据各个样本的具体情况自适应地为各分类器赋予权值 ,从数据融合的层次上来说 ,这是一种介于特征级和决策级的融合方法 . Combining information from multiple classifiers can improve the performance of pattern recognition systems. However, the traditional methods always assign fixed weights to the classifiers according to their classification performances without considering the sample itself. A clusterirng analogy fusion method is proposed in this paper, which estimates the reliability of each classifier by analyzing the distribution of samples, and adaptively assigns weights to classifiers based on the reliability estimation. This method can be seen as a method lying between feature level and decision level.
出处 《北方交通大学学报》 CSCD 北大核心 2001年第2期14-17,共4页 Journal of Northern Jiaotong University
基金 国家自然科学基金重点资助项目!( 697893 0 1)
关键词 模式识别 数据融合 分类器 自适应权值 pattern recognition data fusion classifier
  • 相关文献

参考文献2

  • 1Hong L,IEEE Transactionson Pattern Analysisand Machine Intelligence,1998年,20卷,12期,1295页
  • 2Ho T K,IEEE Trans Pattern Analysisand Machine Intelligence,1994年,16卷,1期,66页

同被引文献25

  • 1方敏.集成学习的多分类器动态融合方法研究[J].系统工程与电子技术,2006,28(11):1759-1761. 被引量:12
  • 2李丹,李国正,陆文聪.用于药物活性预报的Co-Training方法[J].计算机科学,2006,33(12):159-161. 被引量:3
  • 3Neagu D,Guo G D.A data-driven approach for improved effective classification in predictive toxicology[C]//Proc of IEEE-ICCC(IEEE International Conference on Computational Cybernetics) ,Tallinn, Estonia, 2006.
  • 4Zhou Z H,Wu J,Tang W.Ensembling neural networks:Many could be better than all[J].Artificial Intelligence, 2002,137(1-2) : 239-263.
  • 5Geng X,Zhou Z H.Selective ensemble of multiple eigenspaces for face recognition[R].AI Lab,Computer Science & Technology Department, Nanjing University, Nanjing, China, 2003-08.
  • 6Parikh D, Kim M T,Oagaro J,et al.Combining classifiers for multisensor data fusion[C]//2004 IEEE International Conference on Systems, Man and Cybemetica, 2004,2( 10-13 ) : 1232-1237.
  • 7Giacinto G,Roli F.Dynamic classifier selection based on multiple classifier behavior[J].Pattern Recognition,2001,34(9): 1879-1881.
  • 8王伟.多分类器日文假名识别研究[D].哈尔滨:哈尔滨工业大学,2004.
  • 9Shahshahani B,Landgrebe D.The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J].IEEE Transactions of Geoscience and Remote Sensing, 1994,32(5): 1087-1095.
  • 10Zhou Z H,Zhan D C,Yang Q.Semi-supervised learning with very few labeled training examples[EB/OL].Association for the Advancement of Artificial Intelligence.http ://www.aaai.org.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部