摘要
在自反Banach空间上的线性算子T是B型良性有界的充要条件是T*也是B型良性有界的,但在非自反空间上这种性质不一定成立。本文在包含可补子空间同构于C0或l1的Banach空间上构造了一个B型良性有界线性算子,但其共轭算子不是B型的。
A linear operator T on reflexive Banach space X is well-bounded of type (B) if and only if T* is too, but this property may fail in non-reflexive Banach space. In this paper, we structure a linear operator T on Banach space X which contains a complemented subspace isomorphic to C0 or l1. T is well-bounded of type(B),but T* is not.