摘要
本文利用Rn+N中n-维紧致、连通,可定向的嵌入子流形I(Mn)的Kiling-lipschitz曲率G(P,V),定义一个Morse多项式Mt(Mn,I)。再利用高度函数导出Mt(Mn,I)的系数与I(Mn)上的Morse函数的临界点及指数间的内在联系的关系式,从而得到一个主要定理:存在非负实系数多项式Q(t)使得:Mt(Mn,I)-Pt(Mn,I)=(I+t)Q(t).
For any compact、oriented、n-dimensional C ∞-manifold M n embedded into R n+N , we construct a normal fibre bundle.By structure equations and Killing-Lipschitz curvature, we can introduce:a k=1ω(n+N-1)∫ B k |G(p,v(p))| d v∧∑ N-1 (where ω(n+N-1)) is the area of n+N-1-dimensional sphere, B k is the subset of S v such that the structure matrix (A v sj (I(p))) n×n ) have type number k).M t(M n,I)=∑nk=0a kt k (be called Morse Polynomial) With high level function, we generalized the crofton formula which is the bridge from the Morse polynomial of topological form to the Geometric form and we have: Main Theorem: There exist a polynomial with nonnegative real coefficient Q(t), Such thatM t(M n,I)-P t(M n,I)=(1+t)Q(t) Where P t(M n,I)=∑nk=0β kt k, β k= dim H k(I(M n),R).