摘要
首先阐述了水下目标识别的研究发展和系统组成 ,然后提出了一种基于遗传BP算法训练神经网络目标分类器的新方法。实验结果表明采用新方法的神经网络分类器比采用改进BP算法的神经网络分类器具有更优的分类效果。
The development and system composition of underwater target recognition system is expounded at first, and then a novel method for training neural network target classifier by using genetic-backpropagation algorithm is proposed. The result of experiment shows that the performance of neural network target classifier based on genetic-backpropagation algorithm is better than that of neural network target classifier based on the improved backpropagation algorithm.
出处
《华东船舶工业学院学报》
EI
2001年第2期43-47,共5页
Journal of East China Shipbuilding Institute(Natural Science Edition)
基金
企业协作技术攻关课题! (院编 2 0 0 0 30 9)
关键词
遗传BP算法
神经网络
水下目标识别
目标分类器
genetic-backpropagation algorithm
neural network
underwater target recognition