1Zevenhoven R, Eloneva S, Teir S. Chemical fixation of CO2 in carbonates: routes to valuable products and long- term storage[ J]. Catalysis Today, 2006, 115: 73-79.
2de Morais M G, Costa J A V. Biofixation of carbon diox- ide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor[ J]. Journal of Biotechnology, 2007, 129 (3) : 439-445.
3Sydney E B, Sturm W, de Carvalho J C, et al. Potential carbon dioxide fixation by industrially important microal- gae[ J ]. Bioresource Technology, 2010, 101 ( 15 ) : 5892- 5896.
4Gonz(llez L6pez C V, Acin Fern6ndez F G, Fern(lndezSevilla J M, et al, Utilization of the cyanobacteria Ana- baena sp. ATCC 33047 in CO2 removal processes [ J]. Bioresource Technology, 2009, 100(23) : 5904-5910.
5Savir Y, Noor E, Milo R, et al. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-di- mensional landscape [ J ]. Proc Natl Acad Sci USA, 2010, 107(8): 3475-3480.
6Yoshizawa Y, Toyoda K, Arai 14, et al. CO-responsive expression and gene organization of three Ribulose-1, 5- Bisphosphate Carboxylase/Oxygenase enzymes and car- boxysomes in Hydrogenovibrio marinus Strain MH-110 [ J ]. Journal of Bacteriology, 2004, 186 (17) : 5685- 5691.
7Tcherkez G G B, Farquhar G D, Andrews T J. Despite slow catalysis and confused substrate specificity, all ribu- lose bisphosphate carboxylases may be nearly perfectly optimized [ J]. Proc Natl Acad Sci USA, 2006, 103 (19) : 7246-7251.
8Bar-Evena A, Noor E, Lewis N E, et al. Design and a- nalysis of synthetic carbon fixation pathways [ J]. Proc Natl Acad Sci USA, 2010, 107(19) : 8889-8894.