期刊文献+

平面有界三次系统有限奇点分布举例

On the distribution of finity critical points of bounded cubic systems in the plane
下载PDF
导出
摘要 通过构造有界的平面三次系统 ,证实了 (1 )其有限奇点的 5- 4(5个奇点指标为 +1 ,另 4个奇点指标为 - 1 )、3- 2、2 - 1、+1四种分布均可实现 ;(2 )仅有一个指标为 +1的有限奇点的有界三次系统至少有 1 1种类型 ;(3) By structure the bounded cubic systems in the plane,we prove that:1) the system (1) have distribution of critical point with 5-4 (5 critical points with index +1 and 4 critical points with index -1),3-2,2-1,+1;2) the bounded cubic systems in the plane which has only one critical point with index +1 have at least 11 structures;3) the distribution of finity critical points of bounded cubic systems with same topological structure near the equator have different struction.
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2001年第2期92-95,共4页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 国家自然科学基金资助项目!(196 710 17) 福建省自然科学基金资助项目!(A95 0 2 5 )
关键词 有界三次系统 奇点分布 拓扑结构 奇点指标 轨线 有限奇点 鞍点 bounded cubic systems distribution of critical point topological structure
  • 相关文献

参考文献2

  • 1[1]CIMA A,LIBRE J.Bounded polynomial verctor fields[J].Trans Amer Math Soc,1990,318(2):557-579.
  • 2[2]ZHANG Jian-feng.The equator of bounded cubic systems in the plane[J].Ann Diff Eqn,1995,10(5):182-185.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部