期刊文献+

一种基于SVM的函数模拟方法 被引量:8

A Function Simulation Based on Support Vector Machine
下载PDF
导出
摘要 支持向量机在高维空间中表示复杂函数是一种有效的通用方法 ,也是一种新的、很有发展前景的机器学习算法。 Support Vector Machine (SVM) is an effective and general method for representing complex function in high dimensional space,and a new kind of promising machine learning algorithm. In this paper,a nonlinear regression algorithm based on SVM is presented to make function simulation.
作者 李凯 郭子雪
出处 《微机发展》 2001年第3期5-6,共2页 Microcomputer Development
关键词 支持向量机 非线性回归 函数模拟 SVM 机器学习 Support Vector Machine Nonlinear Regression Function Simulation
  • 相关文献

参考文献3

二级参考文献16

  • 1陶卿.基于约束区域的神经网络模型及其在优化和联想记忆中的应用:中国科学技术大学博士学位论文[M].,1999..
  • 2[1]Vapnik V, Lerner A. Pattern Recognition using Generalized Portrait. Automation and Remote Control, 1963,24:6
  • 3[2]Kimeldorf G, Wahba G. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. , 1971,33(1):82~95
  • 4[3]Wahba G. Spline Models for Observational Data(book).SLAM, CBMS-NSF Regional Conference Series, V59.1990
  • 5[4]Boser B, et al. A training algorithm for optimal margin classifiers. Fifth Annual Workshop on Computational Learning Theory. ACM Press, Pittsburgh. 1992
  • 6[5]Vapnik V. The Nature of Statistical Learning Theory.Springer-Verlag, New York. 1995
  • 7[6]Keerthi S S, el al. A fast iterative nearest point algorithm for support vector machine classifier design: [Technical Report No. TR-ISL-99-03]. Dept of CSA,IISC,Ranga lore, INDIA. 1999
  • 8[7]Tsuda K. Optimal Hyperplane Classifier with Adaptive Norm: [ETL technical report TR-99-9]. 1999
  • 9[8]Roobaert D, et al. View-based 3D object recognition with Support Vector Machines. In: Proc. IEEE Neural Net works for Signal Processing Workshop. 1999
  • 10[9]Pontil M, et al. On the Noise Model of Support Vector Machine Regression, CBCL Paper # 168,AI Memo # 1851, Massachusetts Institute of Technology, Cambridge. MA, October 1998

共引文献70

同被引文献62

引证文献8

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部