期刊文献+

并行格型结构实现一维块时间递归实值离散Gabor变换

Parallel Lattice Structure of 1-D Block Time-recursive Real-valued Gabor Transforms
下载PDF
导出
摘要 为了有效和快速地计算实值离散Gabor变换,本文提出了在临界抽样条件下,一维块时间递归实值离散Gabor变换系数求解算法和由变换系数重建原信号算法,并研究了并行格型结构实现这两种算法的方法。 Under the condition of critical sampling the efficient and fast block time-recursive algorithms for both the computation of the 1-D real-valued discrete Gabor transform coefficients and the reconstruction of the original signal from the coefficients are developed in this paper. The implementation of these two algorithms solued by parallel lattice structure are studies.
作者 陶亮
出处 《现代计算机》 2001年第3期6-9,共4页 Modern Computer
关键词 实值离散GABOR变换 并行格型结构 块时间递归算法 信号处理 Real-valued discrete Gabor transforms Parallel lattice structure Block time-recursive algorithms
  • 相关文献

参考文献10

  • 1D.Gabor.Theoryofcommunication.J.Inst.Electr.Eng.,1946,93(Ⅲ):429-457
  • 2M.Bastiaans.Gabor's expansion of a signal into gaussion elementary signals.Opt.Eng.,1981,20(4):594-598
  • 3J.Wexler and S.Raz.Discrete Gabor expansions.Signal Processing,1990,21(3):207-220
  • 4S.Qian and D.Chen.Joint time-frequency analysis.IEEE Signal Processing Magazine,1999,6(2):52-67
  • 5Tao Liang(陶亮) and H.K.Kwan.Real Discrete Gabor Expansion for Finite and Infinite Sequences.Proceedings of the 2000 IEEE International Symposium on Circuits and Systems,Geneva,Switzerland,2000,Ⅳ-637-Ⅳ-640
  • 6Tao Liang and H.K.Kwan.2-D Real Gabor Transform.Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering,Edmonton,Alberta,Canada,May 9-12,1999,831-834
  • 7陶亮,张德龙,H.K.Kwan.离散信号和图象的实数形式Gabor变换[J].中国图象图形学报(A辑),2000,5(10):840-845. 被引量:10
  • 8陶亮,解小平.二维实值与复值离散GABOR变换的比较[J].现代计算机,2000,6(103):9-11. 被引量:1
  • 9Bracewell R M,The Fourier Transform and Its Application (2d ed.),McGraw-Hill,New York,1986
  • 10Chao Lu,S.Joshi and Joel M.Morris,Parallel Lattice Structure of Block Time-recursive Generalized Gabor Transforms,Signal Processing,vol.57,no.2,pp.195-203,1997

二级参考文献18

  • 11,Gabor D.Theory of communication.J.Inst.Electr.Eng.,1946,93(III):429~457.
  • 22,Gertner I,Zeevi Y.On the zak-gabor representation of image.In:Proceeding of SPIE,Visual Commun.Image Processing,1990:1738~1748.
  • 33 Bastiaans M.Gabor's expansion of a signal into gaussionelementary signals,Opt.Eng.1981,20(4):594~598.
  • 44,Wexler J,Raz S.Discrete Gabor transforms.Signal Processing,1990,21(3):207~220.
  • 55,Qian S,Chen D.Discrete Gabor transforms.IEEE Trans Signal Processing,1993,21(7):2429~2438.
  • 66,Daugman J.Complete discrete 2-D Gabor transform by neural networks for image analysis and compression.IEEE Trans Acoust.,Speech,Signal Processing,1988,36(7):1169~1179.
  • 77,Ibrahim A,Azimi-Sadjadi M R.A fast learning algorithm for gabor transformation.IEEE Trans Image Processing,1996,5(5):171~175.
  • 88,Tao Liang,Kwan H K.2-D real gabor transform.In:Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering,Edmonton,Alberta,Canada,1999,831~834.
  • 99,Bracewell R M.The discrete hartley transform,J.Opt.Soc.Am.,1983,73(12):1932~1835.
  • 1010,Liu K J R,Chiu Ching-Te.Unified parallel lattice structures for time-recursive discrete cosine/sine/Hartley transforms.IEEE Trans Signal Processing,1993,41(3):1357~1377.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部