摘要
在整个n维空间上考虑非标准增长椭圆型方程(1),证明如果存在某个适当的α>0,使(1)的解u∈La(En),那么u只能是零解.
Consider on En the following equation: where Ai and B satisfy the structural conditions: where pi> 1, k≥1 and 1 - 1/p≥γi/pi=γ/p≤1-1/p* 1/n< (1/pi )/n= 1/p= l/p * + 1/m<1. It is proved that if (En) be a entire generalized solution of the equation and u∈ Lα (E),α>0 may be arbitrary for γ=p - 1 and for p-1<γ≤p (1 - 1/p * ),then, u must be a null solution.