摘要
在本文中,我们着重研究了常曲率空间中子流形的无穷小Ⅱ—等距问题。所得到定理都是新的,而且把E^3中的某些经典结果推广到了常曲率空间中具有高余维数的子流形上。
Inthis paper , we consider the infinitesimal I -iso-metry def6rmations of submanifolds immersed in a space form N of constant curvature. We obtain some reswlts which are new even in the case of N being the Euc -lidean space. At the same time,we generalize some classical results in E3 to higher codimension sub -manifolds immersed in a space form of constant cur -vature.
出处
《重庆师专学报》
1994年第2期1-7,共7页
Journal of Chongqing Teachers College
基金
中国科学院数学研究所资助课题
关键词
无穷小变形
无穷小Ⅱ-等距
常曲率空间
截面曲率
子流形
无穷小刚性
黎曼流形
Infinitesimal defformation. Infinite- slmal I -isometry.sectional curvature. 1991Math.Subject Classification(Amer.Math.Soc. ):53C40,53C42.