期刊文献+

增益幅度不一致条件下波达方向估计方法 被引量:8

Approach for Direction of Arrival Estimation with Sensor Gain Uncertainties
下载PDF
导出
摘要 在各阵元增益不一致条件下 ,模型误差导致波达方向 (DOA)估计性能恶化 .Weiss等研究了一种对增益幅度误差不敏感的一维搜索估计方法 ,但存在DOA估计的模糊性问题 .本文在增益幅度未知条件下 ,提出了一种新的基于广义特征值分解的DOA估计方法 ,并给出了模糊性问题分析。 Recent studies show that performance of MUSIC or other algorithms degrades drastically and even fails with a bad knowledge on array manifold. An approach based on 1-dimensional searching for DOA estimation with unknown intensity coefficients was presented in reference [1]. The ambiguous peaks appearing in certain cases must be eliminated. A new DOA estimation method based on generalized eigenvalue decomposition is proposed. Detailed analysis of ambiguous problem is presented and is illuminated by numerical examples.
作者 万群 杨万麟
出处 《电子学报》 EI CAS CSCD 北大核心 2001年第6期730-732,共3页 Acta Electronica Sinica
关键词 信号估计 增益幅度 波达方向 Algorithms Computer simulation Eigenvalues and eigenfunctions Estimation Gain control Mathematical models Matrix algebra Radar antennas Signal processing
  • 相关文献

参考文献5

  • 1[1]Weiss A J,et al.Eigenstructure approach for array processing with unknown intensity coefficients [J].IEEE Trans.on Signal Processing,1988,36(10):1613-1617.
  • 2[2]Paulraj A,Kailath T.DOA estimation by eigenstructure methods with unknown sensor gain and phase [A].Proc.of ICASSP [C],Tampa FL,1985,3: 17.7.1-17.7.4.
  • 3[3]Friedlander B,Weiss A J.Eigenstructure methods for direction finding with sensor gain and phase uncertainties [A].Proc.of ICASSP[C],New York,1988: 2681-2684.
  • 4[4]Jansson M,et al.Weighted subspace fitting for general array error models [J].IEEE Trans.on Signal Processing,1998,46(9):2484-2498.
  • 5[5]Fieller A,et al.Robust bearing estimation in the presence of direction-dependent modeling errors:Identifiability and treatment [A].Proc.of ICASSP [C],Detroit,MI,1995:1884-1887.

同被引文献49

  • 1杨超,邱文杰.自适应天线中阵元间互耦的校正[J].电子学报,1993,21(3):58-62. 被引量:19
  • 2王兰美,廖桂生,王洪洋.矢量传感器增益校正与补偿[J].电波科学学报,2005,20(5):687-690. 被引量:5
  • 3盛骤 谢式千.概率论与数理统计[M].北京:高等教育出版社,1989.189-194.
  • 4苏为民 倪晋麟.通道失配对MUSIC空间谱及分辨率的影响[J].电子学报,1998,26(9):142-145.
  • 5[1]MOFFET A T.Minimun-redundancy Linear Arrays[J].IEEE Trans.on Antenna Propagat.,1968,16:172-175.
  • 6[2]ABRAMOVICH Y H,GRAY D A,GOROKHOV A Y,et al.Comparsion of DOA Estimation Performance for Various Types of Sparse Antenna Array Geometries[C]//Proc.EUSIPCO.Trieste,Italy,1996:915-918.
  • 7[4]CHAMBER C,TOZER T C,SHARMAN K C,et al.Temporal and Spatial Sampling Influence on the Estimates of Superimposed Narrowband Signals:When Less Can Mean More[J].IEEE Trans.on Signal Processing,1996,44(12):3085-3098.
  • 8[5]PROUKAKIS C,MANIKAS A.Study of Ambiguities of Linear Arrays[C] //Proc.ICASSP.Adelaide,Australia,1994:549-552.
  • 9[13]Bhaskar D R,Kjersti E,Shane F C,et al.Subset selection in noise based on diversity measure minimization[J].IEEE Trans.on Signal Processing,2003,51(3):760-770.
  • 10[14]Dmitry Malioutov.Mujdat Cetin.Alan S W.A sparse signal reconstruction perspective for source localization with gear arrays[J].IEEE Transactions on Signal Processing,2003,53(8):3010-3022.

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部