期刊文献+

TBC界面裂纹K因子的有限元求解方法 被引量:1

The Finite Element Method for Solving K factor of TBC Interfacial Crack
下载PDF
导出
摘要 本文针对由陶瓷层和粘结层构成的热障涂层 (TBC)双层材料结构 ,探讨了应用裂纹面位移数据及 J积分计算分析陶瓷层 /粘结层界面裂纹应力强度因子的有限元方法。考虑了拉伸及热应力两种载荷情况。在传热分析时 ,考虑了界面裂纹对传热的影响。对于这类双材料界面裂纹 ,应力强度因子是 型和 型裂纹复合的 ,它包括应力强度因子的模和相位角。根据所得的结果比较 。 Thermal barrier coatings (TBCs) provide thermal insulation to high temperature superalloys.However,the interfacial crack caused by thermal loading at the bond coat/TBC is a fatal factor for TBC spallation and failure.The effects of voids or crack like flaw at the interface can be responsible for initiating debonding and accelerating the oxidation process.The effect of interfacial cracks should be studied by using the fracture mechanics approach.Due to different properties of bond and top coatings,stress intensity factor is complex.The paper presents two methods to evaluate the K factor by using numerical results of finite element method.One utilized crack flank displacement data,and another utilized the J integral.A plate with edge crack under thermal loading and tensile loading is chosen as an example to calculate the stress intensity factors.The variation of the properties as a function of temperature was used for the analysis.Both methods show consistent results,but the J integral method can not obtain the phase angle,whereas the other method uses the crack flank displacement data.The results of the experiments or other numerical methods can also be used for K evaluation.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2001年第2期171-174,共4页 Journal of Aerospace Power
关键词 热障涂层 应力强度因子 有限元方法 界面 裂纹 TBC thermal barrier coatings stress intensity factor finite element methods interface cracks
  • 相关文献

参考文献1

  • 1耿瑞,硕士论文,1996年

同被引文献18

  • 1陈立强,宫声凯,徐惠彬.垂直裂纹对EB-PVD热障涂层热循环失效模式的影响[J].金属学报,2005,41(9):979-984. 被引量:10
  • 2王勇军,王峰会,吴应喜.圆柱基体热障涂层热冲击下失效的瞬态应力分析[J].材料科学与工程学报,2007,25(3):422-425. 被引量:4
  • 3Evans A G, Mumm D R, Hutchinson J W, et al. Mchanisms controlling the durability of thermal barrier coating [J].Progress in Materials Science A,2001,46(5) 505- 553.
  • 4Nusier S Q, Newaz G M, Chaudhury Z A. Experimental and analytical evaluation of damage processes in thermal barrier coating[J]. International Journal of Solids and Structures,2000,37(18)2495 -2506.
  • 5Wang J S,Evans A J. Effects of strain cycling on buckling cracking and spalling of a thermally grown alumina on a nickel based bond coat[J]. Acta Materialia, 1999,47 (2) 699- 710.
  • 6ZHOU Bin,Kokinik K. Effect of pre-existing surface crack morphology on the interracial thermal fracture of thermal barrier coating: a numerical study[J].Materials Science and Engineering A,2003,348(1-2) :271-279.
  • 7Kokinik K, Takeuchi Y R, Choules B D. Surface thermal cracking of thermal harrier coating owing to stress relaxation:rconia vs mullite[J].Surface and Coating Technology,1996,82(1 -2) :77-82.
  • 8Tolpygo V K,Clarke D R. Tensile cracking during thermal cycling of alumina films formed by high-temperature oxidation[J].Acta Materialia, 1999,47(13) :3589 -3605.
  • 9Choules B D, Kokini K, Taylor T A. Thermal fracture of ceramic thermal barrier coating under high heat flux with time dependent behavior: Part 1--Experimental results [J]. Materials Science and Engineering A,2001,299(1-2) : 296-304.
  • 10Madhwal M,Jordan E H, Gell M. Failure mechanisms of dense vertically-cracked thermal barrier coating[J]. Mate rials Science and Engineering A,2004, 384(1-2) :151- 161.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部