摘要本文讨论了拓朴线性空间极小点的存在性问题,并证明了定理1。In this paper, the existence of minimal points of a set in a ordered topological vector spaces is discussed. The main result in this paper is the Theorem 1.
1H. W. Corley. An existence result for maximizations with respect to cones[J] 1980,Journal of Optimization Theory and Applications(2):277~281
同被引文献15
1张恭庆 林源渠.泛函分析讲义[M].北京:北京大学出版社,1987.226.
2郭大钧.非线性泛函分析[M].济南:山东科技出版社,1984.
3Chen Y Q, Cho Y J, Kim J K, et al. Note on KKM maps and applications [ J ]. Fixed Point Theory and Applications, 2006,2006 : 53286.
4Chen Y Q,Cho Y J,Yang L. Note on the resuhs with lower semi-continuity[ J ]. Bull Korean Math Soc, 2002,39 ( 4 ) : 535-541.
5Khanh P Q,Quy D N. A generalized distance and enhanced Ekeland' s variational principle for vector functions [ J ]. Nonlinear Analysis ,2010,73 ( 7 ) :2245-2259.
6Khanh P Q, Quy D N. On Ekeland' s variational principle for Pareto minima of set-valued mappings [ J ]. J Optim The- ory Appl,2012,153 (2) :280-297.
7Cesari L, Suryanrayana M B. Existence theorems for Pareto optimization [ J ]. Bulletin of the American Mathematical So- ciety, 1978,244 : 37-65.
8Corley H W. An Existence Result for Maximizations with Respect to Cones [ J ]. Journal of Optimization Theory and Applications, 1980,31 ( 2 ) :277-281.
9Corley H W. Existence and Lagrangian duality for maximiza- tions of set-valued Functions [ J ]. Journal of Optimization Theory and Applications, 1987,54 ( 3 ) : 489-501.
10Tanaka T. Some minimax problem of vector-valued functions [ J ]. Journal of Optimization and Applications, 1988, 59 ( 3 ) :505-524.