摘要
设L_M~*[0,1]是Orlicz空间,K_nf(x)是Kantorovich算子,在本文中,我们得到的主要结果是: 定理2 若f∈L_M~*[0,1],则∣K_nf(x)-f(x)∣_M≤cω_(1,m)(f;1/n^(1/2))其中ω(1,m)(f,t)是f∈L_M~*[0,1]的一阶光滑模。
Let L_M denote the Orlicz Space and Knf (x) be a Kantorovich Operator. In the paper, We obtain follwing main results: Theorem 2IF feL_M (I) , then Where the ω_(1,M) (f, t) be called modulus of Smoothncss of the function f∈L_M (Ⅰ)
关键词
算子
逼近
光滑模
Operator
Approximation
Modulus of Smoothness