摘要
演化计算是模拟自然界生物演化过程产生的随机优化策略与技术。由于它具有稳健性、通用性等优点和自组织、自适应、自学习等智能特征 ,已广泛应用于许多领域。演化计算的最大特点是通过进化去解决问题 ,即不必精确地告诉计算机具体怎样去做 ,而由计算自动完成 ,显然这正是解决缺少领域知识的问题所需要的。文章介绍了演化计算的起源、基本理论、基本方法、主要分支、主要特点、应用领域和发展前景。
Evolutionary Computation is a stochastic optimization strategy and technique,which gets inspirations from natural evolution.Because of its properties of robustness,universality,self-organizing,self-adaptation and self-learning,Evoluitonary Computation has been applied to many fields.Solving problems by evolution is the distinctive most feature of Evolutionary Computation,which means obtaining the solution don't have to specific how to do it.Obviously Evolutionary Computation can be used in domains where little a priori knowledge is available or where such knowledge is very costly to obtain.In this thesis ,we present evolutionary Computation including its origin,basic theory,main branches,basic methods and main propertys,and foresee its future devoloplment.
出处
《株洲工学院学报》
2001年第3期33-36,共4页
Journal of Zhuzhou Institute of Technology
基金
国家自然科学基金资助项目 !自动程序设计理论与应用 (60 0 730 4 3)
关键词
演化计算
演化规划
遗传程序设计
演化策略
演化硬币
函数优化
evolutionary computation
evolutionary programming
genetic programming
evolutinary strategy
evolvable hardware
function optimization