摘要
利用对称一维无限深阱势的哈密顿算符和自然算符构造出该势场的非线性谱生成代数 ,并在此基础上得到了一种新的非线性相干态 .该相干态具有时间稳定性 ,既可以看成本征值为算符函数的降算符本征态 ,也可以看成广义极小测不准状态的转动态 .
Using the Hamiltonian of symmetrical one dimersional infinitely deep square well potential and natural operators,we obtain its nonlinear spectrum and generating algebra,and get a class of new nonlinear coherent states on the basis of the nonlinear algebra obfained. These coherent states are of temporal stability,and can be regarded as the eigenstates of the lower operator with the eigenvalues in an operator field and as the rotational states of the generalized minimal uncertainly states as well.
出处
《高能物理与核物理》
CSCD
北大核心
2001年第6期487-493,共7页
High Energy Physics and Nuclear Physics
基金
安徽省自然科学基金! ( 990 4 72 1 7)
安徽省教委资助&&
关键词
一维无限深阱势
非线性谱生成代数
相干态
时间稳定性
哈密顿算符
自然算符
one dimensional infinitely deep square well potential,nonlinear spectrum generating algebra,coherent states,temporal stability.