期刊文献+

一个图像数据库检索系统的结构设计和快速检索方法 被引量:3

Architecture Design and Fast Retrieving Method of An Image Database Retrieving System
下载PDF
导出
摘要 本文介绍了图像数据库区别于常规数据库的特点,并以数字化图书馆的图像数据库子系统Basestar为例,介绍了图像数据库检索系统的结构和检索方法。Basestar采用综合了颜色、形状、纹理三种特征矢量的综合性检索方法,本文详细介绍了这种方法,并论述了在此方法基础上,根据三角形不等式准则改进而成的快速检索方法的原理和实现。实验证明Basestar系统具有较好的检索效果,检索结果证明快速检索方法是有效的。 In this paper, the speciality of an image database different from a general database is described. With the illustration of Basestar, the image database subsytem in digital library, the architecture and retrieving method of the image database retrieving system is stated. Basestar employs retrieving method synthesized with color feature vector, shape feature vector and texture feature vector. In this paper,this synthesized method is described in details,and the fast algorithm on the basis of this method, according to triangle inequality criterion, is also represented. Experiments shows that Basestar has a good retrieving effect and the effectivity of the fast retrieving method is proved by retrieving results.
出处 《计算机与数字工程》 2001年第3期34-40,64,共8页 Computer & Digital Engineering
关键词 图像数据库 特征矢量 快速检索 图像数据库检索系统 模式识别 Image database, Image retrieval, Feature vector,Fast retrieval
  • 相关文献

参考文献3

二级参考文献1

  • 1Zhang Y J,SPIE.3312,1998年,371页

共引文献75

同被引文献28

  • 1王亮申,欧宗瑛,侯杰,于京诺,曲衍国,宋进桂,朱玉才.基于金字塔结构颜色特征的图像数据库检索[J].计算机工程与设计,2005,26(4):1041-1042. 被引量:3
  • 2卢佳,宋余庆,金华,周成兵.图像数据库索引技术的研究与探讨[J].计算机工程与设计,2005,26(7):1759-1761. 被引量:3
  • 3熊江..NET环境下基于图像内容智能检索的研究[J].计算机工程与设计,2007,28(1):167-168. 被引量:2
  • 4Imagenet.http://www.image-net.org/.
  • 5Fire.http://www.image-net.org/.
  • 6CBIR.http://en.wikipedia.org/wiki/CBIR.
  • 7Thomas Deselaers,Daniel Keysers,Hermann Ney.Features for Image Retrieval.DAGM2004,Pattern Recognition,26th DAGM Symposium.
  • 8J.Puzicha,Y.Rubner,C.Tomasi,and J.Buhmann.Empirical evaluation of dissimilarity measures for color and texture.In Int.Conf.on Computer Vision,volume2,pp.1165–1173,Corfu,Greece,Sept.1999.
  • 9M-tree的主页.http://www-db.deis.unibo.it/Mtree/.
  • 10Liping Jing;Ng,M.K.;Huang,J.Z.An Entropy Weighting k-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data.Knowledge and Data Engineering,IEEE Transactions on Volume19,Issue8,Aug.2007Page(s):1026-1041.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部