期刊文献+

基于ART算法的电子商务个性化聚类模型的设计与实现 被引量:4

E-COMMERCE CHARACTERISTIC-CLUSTERING MODEL BASED ON ART ALGORITHM: DESIGN AND ITS IMPLEMENTATION
下载PDF
导出
摘要 本文针对个性化电子商务网站建设中出现的难于有效发现用户行为特征问题 ,提出一种基于 ART神经网络自适应谐振算法的个性矢量聚类模型 .该聚类模型由两个智能子系统和三个逻辑控制单元组成 ,采用二值输入模式 ,具备很强的自适应性 .模型实现是在 C+ +语言平台上进行的 .在模型程序设计中 ,采用衍生类方式构造子系统单元 ,通过控制对话、数据共享建立系统单元之间的联系 .该模型可以有效挖掘网络用户行为典型个性特征 ,用于指导电子商务网站资源的组织和再分配 . This paper suggests a characteristic clustering model based on ART algorithm, which contraposes some difficulties of finding typical characteristic of users .The clustering model consists of two intelligent subsystems and three logical units, adopting two value inputs, having powerful capacity of self adapting. The models implementation employs C++ language platform .In the process of programming, the model introduces original class to build subsystem and establishes relations via controlling dialogue and sharing DATA. This model mines typical characteristic of actions of users of Internet, farther it can be used to direct organizing and re allotting resources of E commence sites.
出处 《小型微型计算机系统》 CSCD 北大核心 2001年第7期781-784,共4页 Journal of Chinese Computer Systems
基金 :973国家重点基础研究发展规划项目 (G19980 30 413)的资助
关键词 INTERNET 电子商务 ART算法 网站 个性化聚类模型 E commerce ART algorithm Clustering model Characteristic analysis Base class of nerve cell
  • 相关文献

参考文献4

  • 1庄镇泉 王煦法.神经网络和神经计算机[M].中国科学出版社,1992,12..
  • 2Zheng Y,Proc 1997 IEEE Intl Conf ntelligent Processing Systems,1997年,923~927页
  • 3焦李成,神经网络计算,1993年,9页
  • 4庄镇泉,神经网络和神经计算机,1992年,12页

共引文献3

同被引文献27

  • 1Goodman J.Leveraging the customer database to your competitive advantage[J].Direct Marketing, 1992,55 ( 8 ) : 26-27.
  • 2Hughes A M.Strategic database marketing[M].Chicago: Probus Publishing, 1994.
  • 3Stone B.Successful direct marketing methods[M].New York: MCGraw-Hill Company, 1995.
  • 4Wu Naiqi, Mao Ning,Qian Yanming.An approach to partner selection in agile manufactttring[J].Journal of Intelligent Manufactttring, 1999 (10) : 519-529.
  • 5Larson E.Partnering on construction projects:A study of the relationship between partnering activities and project success[Y]. IEEE Transactions on Engineering Management, 1997,44(2):35-51.
  • 6Agrawal R, Srikant R.Fast algorithm for mining association rules[C]//Proc 20th lnt Conf Very Large Data Bases, VLDB, Santiago, DC, 1993 : 207-216.
  • 7Jonker J J, Piersma N.Joint optimization of customer segrnentation and marketing policy to maximize long-term profitability[J]. Expert Systems with Applications,2004,24:28-37.
  • 8Wei Jin-Mao, Yi Wei-Guo, Wang Ming-Yang.Novel measurement for mining effective association rules[J].Knowledge-Based Systems, 2006,19 (8) : 739-743.
  • 9Lee A J T, Hong Ruey-Wen, Ko Wei-Min, et al.Mining spatial association rules in image databases[J].Information Sciences, 2006,4:351-366.
  • 10Tseng Ming-Cheng, Lin Wen-Yang.Efficient mining of generalized association rules with non-uniform minimum support[J]. Data & Knowledge Engineering,2006,8:625-643.

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部